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Abstract

Cytogenetic abnormalities including the gain and loss of chromosomes play an 
important role in oncogenesis. Aberrations involving chromosome 1 are one of the most 
common anomalies reported among human neoplasms and have been observed in 
both solid tumors and hematological malignancies. This review highlights the prognostic 
import of cytogenetic abnormalities involving 1q in childhood cancers and weighs 
the evidence supporting some candidate genes that may underlie this phenomenon. 
Gain of chromosome 1q has been frequently noted in pediatric malignancies including 
Wilms tumor, neuroblastoma, Ewing sarcoma and brain tumors such as ependymoma 
and high grade gliomas and the presence of this anomaly is usually associated with 
disease recurrence and poor prognosis. Risk stratifications incorporating the presence 
or absence of additional 1q material are being integrated into many clinical 
management protocols. However the candidate genes on the long arm of chromosome 
1 that serve as drivers of tumorigenesis still remain unidentified. Identification of these 
candidate genes and characterization of their specific functions may potentially help 
scientists develop therapeutic strategies that could improve prognosis in patients whose 
malignant cells harbor additional 1q material. 

ABBREVIATIONS
BBSFOP: Baby Brain Societé Française d’Oncologie 

Pédiatrique; CCSG: Children’s Cancer Study Group; CNS: central 
nervous system; HGG: high grade glioma; NTRK1: neurotrophic 
tyrosine kinase receptor, type 1; RAR: retinoic acid receptor; 
RAS: rat sarcoma; SIOP: International Society of Paediatric 
Oncology; SPRR: small proline rich proteins

INTRODUCTION
Significant improvements have been made in the field of 

pediatric cancer over the last decade with increasing cure rates 
for various malignancies. This is partly due to improvements 
in risk stratification by recognizing various tumor specific 
molecular abnormalities and developing therapies targeting these 
aberrations. Such abnormalities include structural alterations, 
insertional mutagenesis, chromosomal translocations and gene 
amplification, resulting in oncogene activation. Aberrations 
involving chromosome 1 are one of the most common anomalies 
reported among human neoplasms and have been well-described 
in both solid tumors and hematological malignancies [1]. Among 
solid tumors, 1q alterations have been reported in breast, lung 
and germ cell tumors [2, 3]. Gain of chromosome 1q is usually 
associated with poor prognosis and disease recurrence. The 
aberrations can be seen as trisomy of the entire long arm, as an 
isochromosome lq, as a trisomy or as a duplication of a smaller 
region, especially lq23-lq32 [4-6]. It has been suggested that 

three or more copies of a gene (or genes) in this region provide 
a selective advantage to cancer cells. Furthermore, the finding of 
partial or complete lq trisomy being more frequent in recurrent 
than in primary tumors could suggest that this change may be 
associated with tumor progression [7].

Chromosome 1q in Brain Tumors

Brain tumors represent the most common solid tumor 
type in childhood. Ependymomas are the third most common 
central nervous system (CNS) tumors and are associated with a 
mortality rate as high as 40% [8]. Currently the risk stratification 
for ependymoma patients is based solely on clinical parameters, 
and extent of primary tumor resection remains the most 
consistently reported predictor of outcome [9]. Until recently, no 
reliable biological marker that can accurately predict outcome in 
a sizeable population has been identified. Gain of chromosome 
1q has been reported as a frequent genetic aberration in both 
primary and recurrent childhood intracranial ependymomas 
[10]. Kilday et al. surveyed 48 ependymomas, and gain of 1q was 
the most frequent imbalance in primary (17%) and recurrent 
ependymomas (33%). It was also noted to be an independent 
predictor of tumor progression across the pooled trial cohort 
and both United Kingdom Children’s Cancer Study Group/
International Society of Paediatric Oncology (UKCCSG/SIOP) CNS 
9204 clinical trial and Baby Brain Societé Française d’Oncologie 
Pédiatrique (BBSFOP) group protocol [11]. The only clinical 
variable associated with adverse outcome was incomplete tumor 



Central

Saba et al. (2014)
Email: 

J Cancer Biol Res 2(3): 1053 (2014) 2/5

resection. Integrating tumor resectability with 1q25 status 
enabled stratification of cases into disease progression risk 
groups for all three trial cohorts. Higher resolution cytoband 
analysis revealed 1q21–25, 1q32, and 1q42–44 to be amongst the 
most frequently gained sub-regions on this arm (11/48, 23%) 
[11]. This suggests that gain of chromosome 1q has prognostic 
significance and should be incorporated into future trials along 
with other clinical parameters. 

Another group of CNS tumors in children encompasses high 
grade gliomas (HGG) that comprise 15 to 20% of all childhood 
brain tumors; 70 to 90% of these patients die within two years 
of diagnosis [12]. Brain stem gliomas occur rarely in adults, and 
the prognosis in adults is better than in children. Paugh and 
colleagues analyzed HGG samples from 78 pediatric patients 
and noted that gain of chromosome 1q was the most frequent 
finding (29%), followed by high amplitude gains encompassing 
PDGFRA (platelet derived growth factor receptor alpha)(12%) 
[13]. Gain of chromosome 1q was also noted to be significantly 
more frequent in irradiation-induced glioblastoma. There was a 
significant association between 1q gain and decreased survival 
among patients with glioblastoma (p=0.04), although it could 
not be confirmed if this effect was independent of the treatment 
modality used. The investigators also compared structural 
aspects of these chromosomal imbalances in pediatric and adult 
glioblastomas. Pediatric gliobastomas were distinguished from 
adult glioblastomas by frequent gain of chromosome 1q and 
paucity of chromosome 7 gain and 10q losses [13]. Based on 
these findings, identification of one or more candidate genes on 
chromosome 1q, particularly in the region of 1q21-25, might 
be important in identifying pathways involved in the biology of 
these tumors and establishing reliable prognostic markers.

Chromosome 1q in Neuroblastoma

Neuroblastoma, the most common extracranial solid 
tumor, is another pediatric malignancy in which gain of 1q is 
shown to be associated with progressive disease. It is the main 
cause of cancer-related death in pre-school age children [14]. 
Risk stratification is based on age of the patient, stage of the 
disease, histology and MYCN amplification. Genetic changes in 
neuroblastoma that are recognized to correlate with prognosis 
include MYCN amplification, alterations in DNA ploidy index, and 
deletion of 1p in tumors. Trisomies of chromosome 1q along with 
17q in neuroblastoma were initially identified by Gilbert et al., in 
1984 and found to be associated with disease progression [15]. 
Since then, various studies have noted gain of 1q to be a recurrent 
finding. Hirai et al analyzed 27 neuroblastoma samples and 
found that 50% of stage 4 patients and all cases with progressive 
disease had chromosome gain at 1q21-25 [16]. Using dual core 
fluorescent in situ hybridization, the location of the 1q21-25 
gain was refined to encompass an increase in copy number on 
1q23 suggesting that amplification at 1q23 may play a role in 
progressive neuroblastoma [16]. 

Chromosome 1q in Wilms Tumor

Wilms tumor is the most common pediatric renal tumor. 
A majority of the children have favorable histology and good 
outcome. However, about 15% of patients with favorable 
histology and 50% of patients with anaplastic type Wilms tumor 

experience recurrence [17]. The National Wilms Tumor Study 
Group has identified that loss of heterozygosity of chromosome 
1p and 16q are associated with inferior outcomes [18,19]. 
However these anomalies have been found in only 4.6% of the 
patients enrolled in the third and fourth National Wilms Tumor 
Studies. Other genetic abnormalities have also been identified, 
and gain of chromosome 1q has been noted to be a recurrent 
finding associated with a poorer prognosis [19]. A total of 212 
samples from patients in various stages of Wilms tumor were 
analyzed using multiplex ligand dependent probe amplification. 
Tumors from 58 (27%) patients showed evidence of gain of 
1q [18]. The 8-year event free survival was 76% (95% CI, 63-
85%) for those with 1q gain and 93% (95% CI, 87%-96%) for 
those who lacked 1q gain (p=0.0024). The overall survival was 
also found to be lower in the group with gain of 1q (89%) as 
compared to the group that lacked gain of chromosome 1q (98%, 
p=0.0075) [18]. It is also associated with a significant increase 
in the risk of disease recurrence (risk ratio estimate, 2.72; 
p=0.0089). Other groups have also found gain of chromosome 1q 
to be a frequent chromosomal aberration in favorable histology 
Wilms tumor. Natrajan et al analyzed 76 Wilms tumor samples 
by microarray-based comparative genomic hybridization and 
found that gain chromosome 1q was present in 40% of the 
patients and was strongly associated with a poor prognosis [20]. 
A strong correlation was observed between gain of 1q and losses 
of 1p and 16q, suggesting that these abnormalities arise from a 
single chromosomal mechanism. On further analysis they also 
identified recurrent low-level gains at 1q25.3, 1q31 and 1q42, 
thus suggesting that there may be more than one region of gain/
over expression associated with Wilms tumor on chromosome 1q 
[20]. Given the significantly high percentage of 1q and its strong 
association with disease recurrence, it becomes more critical 
to identify the candidate genes involved for possible targeted 
therapy. 

Chromosome 1q in Sarcomas

Ewing sarcoma is the second most common bone tumor and 
is characterized by a balanced translocation t (11;22) (q24;q12) 
which is present in 85 to 90% of the patients. In addition to 22q12 
rearrangements, non-random chromosomal aberrations have 
been detected in more than 50% of the patients [21]. Hattinger et 
al analyzed tumors from 134 patients and found that structural 
aberrations in the long arm of chromosome 1 were present in 21% 
of the patients [22]. Gain of chromosome 1q was associated with 
adverse overall survival and event-free survival and this finding 
may suggest the need for assessing chromosome 1q anomalies 
routinely in all patients with Ewing sarcoma, irrespective of the 
clinical stage, in order to make additional risk stratification [22]. 
Gain of 1q has been reported in other sarcomas as well [1]. Forus 
et al surveyed 54 soft tissue sarcomas by comparative genomic 
hybridization (CGH) analysis and detected frequent amplification 
of the 1q2l-q22 region, indicating that lq21-q22-located genes 
may also play an important role in the development and/ or 
progression of such tumors [3]. 

Chromosome 1q in Other Pediatric Malignancies

Other pediatric malignancies in which gain of 1q has been 
implicated include retinoblastoma [23], Burkitt’s lymphoma [24], 
acute myeloid leukemia [25] and rhabdoymyosarcoma [26]. 
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Candidate Cancer-Related Genes on Chromosome 1q

It is now evident that gain of long arm of chromosome 1q is 
a recurrent aberration in various malignancies and is invariably 
associated with poor outcomes and disease recurrence. However 
the candidate genes on chromosome 1q that could be involved 
in tumorigenesis remain unidentified. Some investigation of 
this question has been undertaken in sarcomas where several 
candidate genes located in the 1q21-23 region have been 
identified. These include OTF-1, NTRK1, and SPRR3 and S100 
family of calcium-binding proteins (CACY and CAPL genes) 
[1,7,27-31]. The neurotrophic tyrosine kinase receptor, type 
1 (NTRK1) is membrane-bound receptor that upon binding 
phosphorylates itself and other members of the mitogen 
activated protein kinase pathway [32]. Members of the small 
proline rich protein (SPRR) class of proteins are differentially 
regulated in various types of epithelia, and their expression 
is modulated in response to environmental insult, aging and 
following carcinogenic transformation [33-35]. The elevated 
expression of calcyclin, a cell-cycle-regulated protein, has been 
observed in highly metastatic melanoma cell lines. Utilizing 
microarray-based comparative genomic hybridization on a series 
of 76 Wilms tumor samples, Natrajan et al. Identified gains in 1q 
as correlating with an increased risk of relapse [20]. Further, 
the authors identified several candidate genes including RAB25, 
NES, CRABP2, HDGF and NTRK1within the region of 1q22-q23 
[20].  RAB25 is a small GTPase encoded by a gene that is also 
present in a similar region of copy number gain in breast and 
ovarian cancers and whose overexpression is associated with 
poor outcome in these tumors [36]. RAB25 is a member of the rat 
sarcoma (RAS) oncoprotein small GTPase superfamily. Members 
of the RAB superfamily play important roles in regulating 
signal transduction and various cellular processes, including 
cell differentiation and proliferation [37]. NES encodes for 
nestin, a protein expressed by dermatomal cells and myoblasts. 
It has been shown to be a transient component of the dynamic 
intermediate filament network during muscle development 
[38]. Nestin is overexpressed in some rhabdomyosarcomas [39], 
neuroectodermal tumors, glioblastomas, astrocytomas, and 
oligodendrogliomas [40,41]. The CRABP2 gene encodes Cellular 
Retinoic Acid Binding Protein 2, which shuttles retinoic acid from 
the cytosol into the nucleus through its ligand-activated nuclear 
localization signal [42]. Downregulation of CRABP2 has been 
associated with poor survival in head and neck squamous cell 
carcinoma and breast cancer [43]. Further, CRABP2 expression 
can inhibit cell growth in various types of carcinomas, an effect 
exerted in part by its ability to deliver retinoic acid to retinoic acid 
receptors (RAR), thus leading to induction of anti-proliferative 
RAR target genes [44-48]. This effect is consistent with the 
fact that retinoic acid signaling promotes the differentiation 
of stem cells, and reduced RAR signaling may be required for 
tumorigenesis. However, CRABP2 overexpression has been found 
in Wilms tumor as described above, as well as in various other 
types of malignancy including ovarian cancer [49] and leukemia 
[50,51]. These opposing observations could be explained if 
CRABP2 exerted effects that were either RAR-independent, cell-
type specific, or if effects were mediated by a neighboring gene. 
HDGF encodes Hepatoma Derived Growth Factor, a heparin-
binding protein that stimulates the proliferation of endothelial 

cells, vascular smooth muscle cells and fibroblasts [52,53]. 
HDGF has been found to be over expressed in several types of 
carcinomas including hepatocellular carcinoma, pancreatic 
cancer, and gastric and esophageal carcinomas, where it plays 
a key role in the development and progression of these cancers 
[54-59]. Further studies to identify the genes on chromosome 1q 
that contribute to carcinogenesis are needed to help characterize 
the pathways involved in disease progression. Doing so will aid in 
development of targeted therapies and thus improve prognosis 
for patients in which this cytogenetic abnormality is noted. 

CONCLUSIONS
In summary, gain of 1q is a frequently occurring genetic 

aberration in various malignancies, including both solid tumors 
and leukemia’s and is more commonly associated with disease 
relapse and a poor prognosis. Thus, it is critical to evaluate its 
utility as a prognostic marker in these cancers. Evaluation of 
chromosome 1q in prospective studies with sizeable patient 
populations will help assess its value in risk stratification. At 
the same time, it is crucial to identify the candidate genes that 
may contribute to tumor genesis and account for the poor 
prognosis conferred by 1q amplification. Such knowledge will 
facilitate the identification of critical pathways that could be 
targeted to prevent disease progression and metastasis. Since 
1q amplification is present in malignancies arising from a variety 
of different tissues of ectodermal, endodermal and mesodermal 
origin, it is likely that the genes affected are involved in universal 
pathways leading to oncogenesis, such as those affecting cell 
proliferation, cell cycle regulation, cell death, and differentiation. 
Evaluation of gain of chromosome 1q in future clinical trials 
could provide an important clue about the mechanisms involved 
in tumor genesis and disease metastasis. 
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