Mini Review

Platelet-Activating Factor-Receptor and Tumor Immunity

Ravi P Sahu1,2*, Raymond L. Konger1,2 and Jeffrey B. Travers1,3,4

1Departments of Pathology & Laboratory Medicine, Indiana University School of Medicine, USA
2Dermatology, Indiana University School of Medicine, USA
3Pharmacology and Toxicology, Indiana University School of Medicine, USA
4Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, USA

Abstract

First described in 1972 by Benveniste and colleagues, platelet-activating factor (PAF) remains one of the potent phospholipid known to date. The role of PAF produced enzymatically in mediating diverse biological and pathophysiological processes including inflammatory and allergic diseases and cancers in response to various stimuli has been extensively studied. However, little is known about the role of non-enzymatically- generated PAF-like lipids produced in response to pro-oxidative stressors, particularly in modulating the host immune responses to tumor immunity, which is the focus of this review.

INTRODUCTION

PAF (1-0-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) is cellular membrane derived phospholipid that mediate its effects via binding to a seven transmembrane G-protein coupled receptor, the PAF-receptor (PAF-R). The expression of the PAF-R has been identified on various immune and non-immune cell types including epithelial, endothelial and cancer cells [1-3]. Enzymatic PAF synthesis is a tightly regulated process that utilizes two different pathways (de novo and remodeling) [4]. In contrast, the exposure to ubiquitous pro-oxidative stressors capable of producing reactive oxygen species (ROS) generate non-enzymatically cleaved oxidized glycerophosphocholines (Ox-GPCs) directly from parent membrane glycerophosphocholines (GPCs) that exhibit PAF-R agonistic activity [5-8]. These pro-oxidative stressors include environmental exposures such as ultraviolet B (UVB) radiation, aryl hydrocarbons from jet fuel to cigarette smoke. Moreover, clinically relevant chemotherapeutic agents, and radiation and photodynamic therapies can also generate Ox-GPCs [5-12]. The activity of both enzymatic PAF as well as Ox-GPCs is thought to be regulated by the major PAF-metabolizing enzyme, serum PAF-acetyl hydrolase (PAF-AH) [2].

PAF and tumor immunity

Several research groups including ours have investigated the role of Ox-GPCs/PAF-R agonists in modulating cutaneous inflammation and host immunity [5-12]. To emphasize, we and others have demonstrated that Ox-GPCs generated via pro-oxidative stressors including UVB and cigarette smoke exposure mediate systemic immunosuppression via a mechanism that involves PAF-R dependent induction of cyclooxygenase type 2 (COX-2) and related prostaglandins and eicosanoids, immunosuppressive cytokine, interleukin 10 (IL-10) and tumor growth factor beta (TGFβ) [7-9,13]. Of significance, our recent studies have demonstrated that these Ox-GPCs/PAF-R agonists mediated systemic immunosuppression augment the growth of experimental murine B16F10 melanoma tumors. This latter process requires host stromal-PAF-R dependent modulation of tumor microenvironment associated suppressive immunophenotype, regulatory T cells (Treg) [13]. Of importance, PAF-R signaling has been implicated in promoting angiogenesis and metastasis via its direct effects on tumor cell PAF-R [14]. Notably, our studies have shown that systemic PAF-R agonists augment the growth of PAF-R negative experimental murine Lewis Lung Cancer (LLCI) growth and metastasis via activating host cell-PAF-R rather tumor cell-PAF-R [15]. These studies indicate that the implications of Ox-GPCs effects on tumor immunity are not limited to melanoma but can also be applied to lung cancer as well as its metastatic ability.

The induction of the PAF-R expression on melanoma cells has been shown to be modulated by chemotherapy and this act to mediate a prosurvival response of tumor cells by chemotherapy and is attenuated by PAF-R antagonists [16]. However, whether or not chemotherapy-mediated effects are via the modulation of the host immune responses is not clear. In our recently completed studies, we demonstrated that treatments with chemotherapeutic agents to murine or human melanoma cells lines in vitro or in vivo generate several novel Ox-GPCs with the PAF-R agonists activity in a process blocked by antioxidants. The expression of the PAF- R in tumor cells resulted in enhanced production of Ox-GPCs compared to the PAF-R-deficient tumor cells (studies...
ACKNOWLEDGEMENTS

This research was supported by grants from the National Institutes of Health R01 HL062996, K22ES023850, Veteran's Administration Merit Award 5I01BX000853, AICR 09A062, ACSIRG 4185607 and Showalter 4485602.

REFERENCES


Cite this article