Case Report

Identification of a Charred Body through the Radiographic Morphology of the Frontal Sinus — A Case Report

Rhonan Ferreira da Silva1,4,6*, Ademir Franco2, Luciana Ribeiro Saboia3, Lívia Graziele Rodrigues1,4, Roberta Rezende Gomes4 and Oscar Javier Francisco Heit5

1Department of Forensic Dentistry, Federal University of Goiás, Brazil
2Department of Forensic Dentistry, Katholieke Universiteit Leuven, Belgium
3Department of Dentistry, Pontifícia Universidade Católica do Paraná, Brazil
4Department of Dentistry, Brazilian Dental Association, Brazil
5Department of Forensic Dentistry, University Autonomous of Entre Rios, Argentina
6Department of Forensic Dentistry and Anthropology, Scientific Police of Goiás, Brazil

Abstract

Introduction: The identification of charred bodies consists of a challenging procedure during forensic investigations. Forensic Dentistry and Anthropology arise essential to enable human identification through biological hard tissues, such as teeth and bones respectively.

Objective: To report a case of positive human identification using the radiographic morphology of the frontal sinuses from postero anterior radiographs of the skull.

Case report: In 2013, an unknown body of a 41-years-old male was found charred inside a residence. The charred body was referred for medical, dental and radiographic exams in order to retrieve information about the cause of death and identity. After checking police lists of missing persons, potential relative were found providing ante-mortem postero anterior radiographs from the skull. The radiograph was reproduced post-mortem, allowing for comparisons and positive identification.

Conclusion: The present study highlights the usefulness of frontal sinuses as identification tools in the routine of forensic sciences and reinforces the need for properly registering and storing radiographic data, making of it potential source of legal evidence in the courts.

INTRODUCTION

In a forensic scope, human cadavers may become directly or indirectly charred. Mostly, the first indicates criminal body incinerations, such as in murder cases [1,2]; while the last is often observed in accidental circumstances followed by incinerations, such as in traffic accidents [3,4] and natural mass disasters [5]. The identification of charred bodies consists of a challenging procedure during forensic investigations. Specifically, the human bodies found charred do not have soft tissues preserved, lacking recognition through facial traits and identification through fingerprints. In this context, Forensic Dentistry and Anthropology become essential to enable human identification through biological hard tissues, such as teeth and bones respectively.

Radiographic registration of hard tissue information is consolidated in the forensic environment as a reliable and useful pathway for the comparative process between Ante-Mortem (AM) and Post-Mortem (PM) data. Several radiographic techniques for the assessment of hard tissue are described into the medical literature. However, in the last few years, Poster Anterior (PA) radiographs of the skull revealed optimal applicability and reliability for outlining the frontal sinuses [6].

The frontal sinuses consist of cavities inside the human frontal bone of the human skull. These anatomic structures may reveal different patterns of volume, position, and arrangement, becoming useful forensic identifiers [7]. Unilateral and bilateral aplasia of the frontal sinuses is rare, making the assessment of radiographic morphology feasible most of the time [9]. During
the human development, the frontal sinuses are not observed at
born, becoming only radiographically detectable around the 4
year of age. The frontal sinuses achieve complete expansion at
the end of adolescence. Further morphologic alterations are only
possible under traumatic or pathologic conditions [10], making
the frontal sinuses also applicable for reconstructive human
identifications as an anthropological marker of age.

In this context, the present study reports a case of positive
human identification of a charred body through the radiographic
morphology of the frontal sinuses.

CASE PRESENTATION

In 2013, a charred human body was found apparently
abandoned inside a residence. After local investigation, the
body was referred for autopsy in order to retrieve information
regarding the cause of death and identity.

The medical autopsy report revealed carbonization of the soft
tissue of face, head and neck; deep carbonization of the thorax,
abdomen, pelvis, arms and hands; partial carbonization of the
legs and external genitalia, revealing male gender; presence
of a gunshot wound in the region of temporal bone; and presence
of a gunshot wound in the left region of the thorax. Additionally,
soot was not observed in the upper respiratory tract indicating
that the victim was not breathing during the incineration. Based
on that, the cause of death was established as acute anemia
produced by firearm projectiles.

The dental autopsy report revealed complete eruption of the
entire permanent dentition, indicating that the victim was older
than 20 years old, according to Nicodemo et al. [8], 1974.

The radiographic autopsy report revealed that a single firearm
projectile remained inside the body. The projectile was referred
for ballistic exam. Moreover, the radiographic assessment of the
skull, performed using PA technique (Figure 1), revealed that the
frontal sinuses were present bilaterally, presenting lobes and
secondary septa. Police investigations were carried in parallel to
the cadaveric exams indicating a potential victim, which was a
man of approximately 41 years old missing for 24 hours. After
interviewing the potential relatives of the victims, police officers
requested any medical record related to the victim. A lateral
and a PA (Figure 2) radiograph of the skull, dated from 2010,
were obtained. Both AM and PM PA radiographs of the skull
were used for radiographic comparative procedure (Figure 3).
Positive matching was achieved considering several parameters
(Table 1), such as the number, shape, and position of the lobes
and septa of the frontal sinuses, culminating in a positive human
identification.

DISCUSSION

In forensics, the morphologic analysis of the frontal sinuses
through radiographs of the skull is performed for more than
90 years, even being accepted in the American courts [11].
Since that time, several cases of positive human identification
found on the uniqueness of the frontal sinuses were reported
in the scientific literature. Silva et al. [2], 2008, reported a case
of positive human identification taken into account the outline
of the frontal sinuses in PA radiographs of the skull, highlighting
the importance of manipulating brightness and contrast if
digital images for better comparative outcomes. Another case
of positive human identification based on the frontal sinus
radiographic morphology was reported by Silva et al. [7], 2009.
The authors specially stated about the advantage of reproducing
PM the same radiographic technique performed AM. Apart from
case reports, original studies were also developed in order to
enhance the practical performance of comparing frontal sinuses
in the forensic routine. David and Saxena [12], 2010, investigated
the uniqueness of the frontal sinus morphology, revealing that
it could be used as an additional tool for human identifications.
position of the median septum. Surely, other forensic pathways can be considered under the need for identification, such as the PM reconstruction of anthropological traits of the victim [15], estimating age and stature, and differentiating sex and ethnicity; the superimposition of radiographic images [16]; even through DNA analysis from bone tissue [17]. However, the adequate quality of AM radiographs of the frontal sinuses enabled a reliable comparative identification.

On the other hand, limitations for the forensic use of frontal sinuses may occur, mainly consisting of the lack of AM radiographic data of the full skull, making this technique restricted to specific applications, such as in the present case. Other limitation potentially detected is the quality of radiographs, which may be caused during image acquisition or after inappropriate storage. Based on that, the present study highlights the need for properly registering and storing radiographic data, making it a potential source of legal evidence to support forensic cases.

CONCLUSION

Forensic facilities worldwide are equipped with a broad range of devices. However, in special situations, such as in developing countries, high-cost imaging and molecular technologies are not available, making necessary the application of alternative but reliable pathways for human identification. Therefore, the present study reported a case of positive human identification based on radiographic records, expressing the potential use of the frontal sinuses as identifiers in the forensic environment.

REFERENCES