Regulated Negative Pressure Wound Therapy (RNPT) Combined Topclosure in the Treatment of Skin Defect for Open Fracture in Lower Extremity

Zhang Hongwei1#, Wang Chaoyang2#, Sun Jianhua3, DU Xinhui3, Fang Qinzheng3, and Moris Topaz4*

1School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, China
2Orthopaedic department, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, China
3Plastic Surgery Unit, Hillel Yaffe Medical Center, Hadera, Israel
4General Surgery Department, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, China
#Zhang Hongwei and Wang Chaoyang contribute the same to this paper

Abstract

Currently, open fracture in lower extremity is a common trauma, which can easily form the skin defect. If the skin defect become an ulcer or ulcer like wound, the treatments will encounter a sticky situation that is hard to heal. Although skin flap grafting, tissue stretching and expansion can be available in this situation, however, they all have disadvantages, such as time consuming, costly, and difficult to operate, etc. In this case, we reviewed one novel treatment, RNPT (regulated negative pressure-assisted wound therapy) combined with TopClosure (skin stretching and wound closure-secure system), for an skin defect patient with lower extremity open fracture, which achieved sound outcome.

INTRODUCTION

Open fracture in lower extremity is the common trauma, which can easily form the skin defect if the local treatment goals are not satisfied, including prevention of infection, soft tissue coverage and fracture stabilisation. Fracture stabilisation can be achieved with internal fixation and external fixation, ring fixators, free or vascularized bone grafting along with allografts or bone substitutes [1,2]. The poor blood supply and high tension around the lower extremity wound tissue makes the treatment of the skin defect difficult. Currently, the traditional effective treatment methods are skin flap grafting, tissue stretching and expansion [3]. However, some of these modalities carry several disadvantages: first, complexity or high technical requirements, which limit the use in the treatment of skin defect in the primary hospitals. Second, high cost and long healing time. Third, affected by the surround environment, the flap can get to ischemia and necrosis, which result in failure of treatment. Now a new method of wound healing, regulated negative pressure-assisted wound therapy (RNPT) combined with TopClosure (an innovative, simple, skin stretching and wound closure-secure system), was employed to treat the skin defect in lower extremity, which got a good result, and now we reviewed this case.

CLINIC DATA

27 year-old male patient, usually in good health, was admitted to hospital in Sept. 16th, 2013, 4 hours after a traffic accident. His right lower extremity severely damaged and deformed accompanied by severe hurt and restricted function.

Physical examination showed as follows

Vital signs are stable. A 8 cm long irregular wound was exposed with a large area of contusion surrounded. Right lower
extremity deformed with abnormal movements.

X-ray showed: Right tibiofibula fractures

Primary diagnosis: Right tibiofibula open fractures

TREATMENT SCHEDULE

“Open reduction and locking titanium external skeletal fixation with regular vacuum drainage” was performed on the day the patient was admitted to the hospital. Antibiotic therapy was given to the patient at the same time.

On 29th Sept. The wound unhealed with much exudation. The exudate bacteria culture showed enterococcus faecalis infection. Ulcer like formed on the site of open fracture in the size of 8×5cm, depth 1.5cm. “Chronic ulcer repair” was performed with antibiotic treatment.

On 9th Oct. The wound surface unhealed with much more exudation. “Chronic ulcer repair and vacuum drainage” was performed.

On 19th Oct. The wound surface still unhealed, in the size of 7×4cm, depth 1cm. Regulated negative pressure-assisted wound therapy (RNPT) and the TopClosure system (for skin stretching and a secure wound closure) was applied to help wound repair. The open wound nearly closed on the 3rd day after RNPT+TopClosure surgery; it was totally closed on the 6th day and the scab fallen down on the 9th day.

MAIN DEVICES AND TECHNIQUES

The TopClosure® 3S System [3]: it comprises two attachment plates (AP) that are interconnected by a long, flexible approximation strap (AS). The APs are adhered to the skin by hypoallergenic, biocompatible adhesive on their undersurface for noninvasive application. Multiple pairs of oval openings along the longitudinal axis of the AP were designed for invasive attachment to the skin, using either staples or sutures. The AS links the opposing APs, enabling approximation and advancing the APs by incremental pull on the AS. The AS is completely inserted through the lock/release ratchet mechanism (L/RM) on the proximal AP until being secured by the AS ’s wings. Next, it is inserted into the L/RM on the opposing AP to allow gradual controlled stretching of the underlying skin. The AS is locked or released by lightly pressing or lifting the L/RM ’s lever. In this case, the stapler and suture line was used to help stick the plates.

RNPT [4]: the application of preset computer-regulated negative pressure, generated by a pump or wall vacuum, led by tubing to contact with the wound surface by a dressing or a
porous compressible mold sponge covered, and is air-tight sealed by a drape. In this case, the pressure was under 125 mmHg, continuous working model. In this pressure, the granulation tissue formation grew best [5]. The dressing changed every 4 days.

DISCUSSION

Ulcer-like wounds are common in diabetic foot and open fracture, especially when the open fracture happen in the lower extremities [6]. The efficacy of traditional treatments is poor, as the secondary skin ischemic damage can easily occur during the treatments, which can lead to necrosis. In modern, traditional medicine, human recombinant epidermal cell growth factor and hydrocolloid dressings, et al., combined with the vacuum therapy has been widely employed to manage the ulcer wounds. These methods can keep the wound surface in the dry and relatively clean status; however, the closure of the wound is slow. And slower the wound get closed, the higher of the wound infection rate, which goes further is amputation [7-10].

Based on the reorientation of the interwoven network of elastin and mainly collagen fibers provides the skin with the ability to stretch and expand [11,12]. Hirshowitz designed the Sure-Closure® skin-stretching system in 1993, which helped primary closure of relatively small- to medium-size skin defects [13]. However, the nature of its invasive, high margin tension that was leading at time to pressure necrosis limited its use [14,15]. Recently, Moris Topaz invented TopClosure skin-stretching system, harnessing the viscoelastic properties of the skin, which eliminate absolutely most of adverse effects of the traditional tension sutures and internal tissue expanders. This innovative device, which highly improved wound healing, can highly promoted the chronic skin defects. During the process of treatment, TopClosure can be adjusted through a mobilizable belt to get right tension for both sides of the wound in an easy way, which can help wound closing. Besides this, the RNPT system was substantially improved by Prof. Topaz to avoid the disadvantages like secondary skin damage, et al, resulted from the local skin ischemia and necrosis, can dramatically accelerate the wound healing [4,16].

RNPT combined TopClosure in the treatment of open wounds has been widely used in Israel, which can shorten treatment time and reduce the dress changing frequency, and achieved good efficacy. However, this wound closure system still need to be studied further with the methods of translational medicine, to further prove its advances and effectivenesses.

ACKNOWLEDGMENT

This paper was supported by: Shihezi university high-level personnel launch scientific research project (RCZX201538); Application base research program of Xinjiang Production and Construction Corps (2016AG019). And we really show our appreciation to Prof. Moris Topaz for the selfless assistance in our center.

REFERENCES