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Lysophospholipids (LPLs) have long been recognized as 
membrane phospholipid metabolites. LPLs are small bioactive 
lipid molecules that are characterized by a single carbon 
chain and a polar head group. LPLs have been implicated in a 
number of pathological states and human diseases. LPLs include 
lysophosphatidic acid (LPA), alkyl-glycerol phosphate (AGP), 
sphingoshine-1-phosphate, and cyclic phosphatidic acid (cPA). 
In recent years, cPA has been reported to be a target for many 
diseases, including obesity [1], atherosclerosis [2], cancer [3], 
and pain [4]. cPA is an analog of LPA that has a 5-atom ring 
linking the phosphate to 2 of the glycerol carbon atoms. cPA is 
found in diverse organisms, from slime molds to humans [5]. The 
concentration of cPA in human serum is estimated to be around 
100 nM. cPA, along with PPARγ agonists, prevents neointima 
formation, adipocytic differentiation, lipid accumulation, and 
upregulation of PPARγ-target gene transcription in mouse 
macrophages [2]. These findings support our hypothesis that cPA 
is an endogenous antagonist of PPARγ. These data suggest that 
cPA offers new therapeutic opportunities to improve the quality 
of patient care. Here, we discuss the current knowledge on the 
pathophysiological actions of cPA and attempt to link them with 
particular targets. 

Enzymatic formation of cPA

Murakami-Murofushi et al. [6] reported that cPA is detected 
in mammalian biological fluids, including human serum. 
Many of the activities of cPA have been attributed to albumin-
associated lipid factors. The first report of the generation of 
cPA by autotaxin (ATX) under non-physiological conditions 
appeared in 2006 [7,8]. ATX, also known as phosphodiesterase 2, 
is a secreted enzyme important for generating the lipid signaling 
molecule LPA [9]. ATX has lysophospholipase D activity and 
converts lysophosphatidylcholine (LPC) into LPA. The enzymatic 
formation and function of cPA are poorly characterized. In 
addition, the identity of the enzyme that contributes to the 
formation of cPA in biological fluids remains unknown. In 
our recent work, we identified phospholipase D2 (PLD2) as 
an enzyme that can generate cPA [2]. PLD, which hydrolyzes 

phosphatidylcholine (PC) to generate choline and bioactive 
lipid, has been implicated in signal transduction, membrane 
trafficking, and cytoskeletal reorganization [10]. There are two 
PLD isoenzymes, PLD1 and PLD2, which are expressed in a 
variety of tissues and cells [11]. We labeled cultured cells with 
[32P]-orthophosphate for 30 min and compared that to [32P]-
labeled cPA from vehicle control cells using two-dimensional thin 
layer chromatography. Furthermore, we used CHO cells stably 
expressing PLD1 or PLD2 or catalytically inactive forms of PLD1 
and PLD2 to delineate the roles of the PLDs in cPA formation. 
PLD2-expressing cell lines had an elevated basal level of cPA 
and higher PMA-stimulated cPA production relative to control 
wild-type (WT) cells [2]. This finding provides evidence for the 
role of PLD2 activation in stimulus-coupled cPA production. In 
recent years, the physiological and pathophysiological functions 
of peroxisome proliferator-activated receptor γ (PPARγ) ligands 
have been explored. In our recent work, we identified cPA as an 
endogenous PPARγ antagonist generated by PLD2 [2].

Role of cPA in lipid signaling-related diseases

Recent reports have been shown that LPA plays an important 
role in the vascular system [12]. LPA is produced in serum 
after the activation of biochemical pathways linked to platelet 
activation. The PPARγ agonists alkyl-LPA [13] and rosiglitazone 
(ROSI) induce neointima when applied topically within the 
carotid artery [14]. Neointimal lesions are characterized by 
the accumulation of cells within the arterial wall and are a 
prelude to atherosclerotic disease [14]. In recent reports, the 
knockdown of 1-acyl-sn-glycerol-3-phosphate acyltransferase 
β (AGPAT2) resulted in increased levels of cPA [15]. AGPAT2 
is located the endoplasmic reticulum membrane and converts 
LPA to phosphatidic acid (PA). Mutations in this gene have been 
associated with congenital generalized lipodystrophy (CGL) [16]. 
Lipodystrophies, including CGL, are heterogeneous acquired or 
inherited disorders characterized by the selective loss of adipose 
tissue and development of severe insulin resistance. AGPAT2 is 
a member of a family of proteins with acyltransferase activity, 
and mediates the acylation of LPA into PA [17]. Subauste et al. 
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recently reported that overexpression of AGPAT2 decreases 
cPA levels [18]. Furthermore, the knockdown of AGPAT2 results 
in increases in the level of the saturated form of cPA 18:0 and 
cPA16:0 [15]. They also assessed the effect of AGPAT2 on PPARγ 
transactivation and found that AGPAT2 increases PPARγ-
dependent luciferase activation. These data suggest that AGPAT2 
modulates PPARγ activity and glycerolipid levels. However, the 
physiological context of these mechanisms in PPARγ signaling 
is still unclear. Further clarification of the PPARγ-cPA axis will 
allow the synthesis of novel drugs that modulate PPARγ function. 
In conclusion, we hope that we have provided interesting insights 
into these recent advances in elucidating the roles of the PPARγ-
cPA axis in various cardiovascular diseases. We expect that the 
reviews presented in this issue, which focus on the interplay 
between PPARγ and the cardiovascular system, will be highly 
useful for those interested in phospholipid biology, nuclear 
receptor function, and their intersection with cardiovascular 
pathologies.
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