Treatment Modifications and Medical Costs Associated with Use of Exenatide BID or Insulin Glargine in Type 2 Diabetes Patients: A Retrospective Database Analysis

Machaon Bonafede1*, Manjiri Pawaskar2, Barbara Johnson1, Robert Fowler1 and Gregory Lenhart1

1Truven Health Analytics, USA
2Eli Lilly and Company, USA

Abstract

Background: Type 2 diabetes (T2D) is a common and costly illness, associated with significant morbidity and mortality.

Objective: This study examined the association between the treatment modification and medical costs for patients using exenatide BID (exenatide) or insulin glargine (glargine).

Methods: The MarketScan Research Databases were used to identify adult patients with T2D who initiated exenatide (N=9,197) or glargine (N=4,499) between 10/01/2006 and 03/31/2008 with 12 months pre- and 18 months post-index continuous enrollment. Patients were propensity score matched (1:1) to control for baseline differences. Treatment modification was defined as the first instance of treatment intensification, switching or discontinuation of the index medication. Cox-proportional hazard models were used to evaluate treatment modification. Generalized linear models were used to evaluate healthcare costs.

Results: A total of 9,197 exenatide and 4,499 glargine patients met all inclusion and exclusion criteria. Matched exenatide (n=3,774) and glargine (n=3,774) cohorts were well balanced with comparable age (57 years), Deyo Charlson Comorbidity score (1.6), and gender (54% male). Treatment modification was more common among glargine patients (HR=1.33, p<0.0001) than exenatide patients. Glargine patients were 72% more likely to intensify treatment (HR=1.72, p<0.0001), 25% more likely to discontinue (HR=1.25, p<0.0001), but 29% less likely to switch therapies (HR=0.71, p<0.0001). The use of exenatide versus glargine was associated with lower total direct medical costs among all patients ($19,654 versus $21,322, respectively; difference= $1,667, p<0.0001), as well as patients who continued their index therapy ($18,324 versus $19,689; difference= $1,546, p<0.005), or who intensified their index therapy ($19,356 versus $21,828; difference= $2,472, p<0.001). There were no significant differences in costs for patients who switched or discontinued their therapy.

Conclusion: Increased treatment modification was associated with increased healthcare costs. The use of exenatide was associated with lower rates of treatment modification and lower total medical costs compared to the use of glargine.

INTRODUCTION

Type 2 diabetes (T2D) is a common and costly chronic disease, with annual direct medical costs of $116 billion and indirect costs from disability, work loss, and premature mortality of an additional $58 billion [1] in the United States. Diabetes is a leading cause of morbidity and mortality. It is associated with significantly higher rate of microvascular (including neuropathy, retinopathy and nephropathy) and macrovascular complications (including stroke, heart disease) [1].

Glycemic control is a primary treatment goal for patients with type 2 diabetes and has been demonstrated to reduce diabetes-related complications of the disease [2], thus reducing both the clinical and economic burden of the disease. Although, there are several treatment strategies available for the treatment of diabetes, maintaining glycemic control is challenging due, in part, to suboptimal adherence or persistence with diabetes medications [3-6]. Exenatide BID (exenatide) and insulin glargine (glargine) are two therapies for the management of type 2 diabetes. Exenatide is a GLP-1 receptor agonist, acting to enhance glucose-dependent insulin secretion, suppress inappropriate glucagon secretion, and slow gastric emptying [7]. Glargine is a long-acting basal insulin analog that reduces fasting plasma glucose.
Treatment switching, augmentation, or discontinuation can indicate that patients may have failed to achieve glycemic control or that the results of a specific therapy are unpredictable. However, there is a scarcity of literature examining the relationship of treatment patterns with the medical costs associated with diabetes therapies. The objective of this study was to examine the rate of treatment modification with exenatide or glargine for management of type 2 diabetes and its association with total medical costs in these patients.

To our knowledge, this is the first study that takes into account association between treatment modifications and healthcare expenditure in patients initiating exenatide or insulin glargine. This study used a large claims database representing US managed care patient population with 18 months follow up period compared to 6 or 12 months follow up period in the previous studies [8,9]. This study used propensity score matching to control for baseline differences in two treatment cohorts as opposed to regression analysis used in a previous study [8].

METHODS

Study design

A claims database was used to select patients with T2D, initiating treatment with exenatide BID. Propensity score matching was used to select a control group of patients with T2D initiating glargine. Treatment modification was assessed through measurement of discontinuation, switching, and intensification of therapy. Generalized Linear Models (GLM) was used to estimate the impact of treatment modification on total healthcare costs for patients initiating exenatide or glargine.

Data sources

Data were derived from the MarketScan® Commercial Claims and Encounters (Commercial) Database and the Medicare Supplemental and Coordination of Benefits (COB) (Medicare) Database. The Commercial Database contains the healthcare experience of several million employees and their dependents annually. The Medicare Database contains the healthcare experience of individuals with Medicare supplemental insurance paid for by employers. Detailed cost, use, and outcomes data are available for both databases, covering inpatient services, outpatient services, and prescription drug claims.

Patient selection

Adult patients (18 years and older) with an exenatide or glargine prescription from October 1, 2006 through September 30, 2007 were selected and screened for continuous eligibility for the 12 and 18 months pre-index or post-index period compared to 6 or 12 months follow up period in the previous studies [8,9]. This study used propensity score matching to control for baseline differences in two treatment cohorts as opposed to regression analysis used in a previous study [8].

Propensity score matching process

Propensity score matching was used to create similar cohorts of patients initiating exenatide and glargine, reducing potential selection bias that may arise when comparing treatments in a non-randomized, observational study design. Variables used in the matching included: gender, age, health plan type, pre-index comorbid burden as measured by the Charlson Comorbidity Index (CCI) score (Deyo version), and pre-index diabetes related complications. Logistic regression was used to complete a 1:1 match of glargine to exenatide patients. The match was evaluated using the standardized difference (presented in table 1); a standardized difference of less than 10 was interpreted to mean that the two groups were comparable for each measure.

Variables

Demographic variables were measured at index and included gender, mean age and age group, geographic region, and health plan type. Clinical variables measured in the 12 months pre-index included the presence of diabetes related microvascular complications (diabetes retinopathy and macular edema; diabetes neuropathy; amputation and ulceration; renal disease) and macrovascular complications (myocardial infarction; ischemic heart disease; congestive heart failure; peripheral vascular disease; cerebrovascular disease). The presence of comorbidities commonly associated with diabetes (hypertension; dyslipidemia; depression; obesity; hypoglycemia) was also measured. The Deyo Charlson Comorbidity Index (CCI) was calculated using claims from the 12-month pre-index period [10]. As prescription claims do not contain prescribing physician specialty, this variable was determined using the provider specialty from a pre-index type 2 diabetes claim with the closest date of service to the index prescription. Pre-index medication use was measured for three drug categories: antidiabetes, cardiovascular, and other drug therapy. The proportion of patients with ≥1 prescription for any drug within a category was determined, as were the number of patients with prescriptions for specific drug classes within categories.

Treatment modification

Three types of treatment modification were evaluated: discontinuation, switching, or intensification of index therapy. Discontinuation was defined as a 90-day gap between the end of the days supply of an index prescription and the fill date for the next prescription for that medication, without a prescription for a non-index glucose-lowering therapy in the 90 days.
Switching was defined as a 90-day gap between the end of the days supply of an index prescription and the fill date for the next prescription for that medication, with a prescription for a non-index glucose-lowering therapy in the 90 days and with a second prescription for the non-index drug within 90 days of the end of the days supply of the first prescription for the non-index drug. In order to count as a switch, the non-index therapy could not have been used pre-index.

Intensification was defined as the addition of a non-index glucose-lowering medication or an increase in the index medication dosage. Additions were indicated by a non-index glucose-lowering medication prescription with overlap of its days supply with that of the index medication, followed by refills of the index medication and the added medication in the 90 days following the end of the day supply specific to that medication. To be considered intensification, the added, non-index glucose-lowering medication could not have been used pre-index. In addition to adding a therapy, patients on insulin glargine could be classified in the treatment intensification group by increasing their medication dose by at least 100%. Dose was calculated for each glargine prescription by dividing the total insulin units dispensed for a prescription by the number of elapsed days between that dispensing date and the next. The definition for intensification was modified for glargine as glargine dose is escalated upwards before adding on to any new medication.

Healthcare costs

The healthcare costs included medical and pharmacy costs. Healthcare costs were measured as the amount reimbursed by health plans converted to 2008 US dollars using the medical component of the Consumer Price Index.

Statistical analysis

Categorical variables were summarized by frequency. Continuous variables were reported by mean and standard deviation. Differences between treatment groups were tested for statistical significance using chi-square tests for categorical variables and t-tests or Wilcoxon rank tests for continuous variables. Demographic and clinical variables were compared both pre- and post-match; treatment modification measures were compared post-match only. Log-rank statistics and hazard ratios were calculated to assess the probability of treatment modification by time post-index for each types of treatment modification (switching, discontinuation, intensification, and any treatment modification). Total costs per patient during the 18-month post-index period were analyzed using GLM with gamma-distributed error and log link, controlling for pre-index patient demographic and clinical characteristics. Separate models were estimated for each type of treatment modification. All analysis was conducted using SAS 9.1 [11].

RESULTS

Baseline characteristics

A total of 9,197 exenatide and 4,499 glargine patients met all inclusion and exclusion criteria (Table 1). Patients treated with exenatide were younger than patients treated with glargine (54.2 versus 59.6, p<0.0001) and a higher percentage of the exenatide cohort was female (58.3% versus 43.3%, p<0.0001). The two treatment cohorts also had different geographic distributions: 53.2% and 27.4% of exenatide-treated patients lived in the South and North Central regions versus 41.3% and 32.8% of glargine-treated patients, respectively. The majority (81%) of both exenatide and glargine-treated patients were covered under a non-capitated/fee-for-service plan.

Propensity score matching resulted in a total of 3,774 matched pairs. Mean age in the exenatide patients was 57.0 years vs. 57.8 years in the glargine patients (standardized difference = 7.8). The percentage of female patients was 45.6% and 45.7% in the exenatide and glargine cohorts, respectively (standardized difference = 0.3). There were significant differences in clinical characteristics of patients between the exenatide and glargine cohorts before matching (Table 1); however, propensity score matching balanced all of these characteristics. After the match, pre-index total healthcare costs were $11,194 for exenatide-treated patients and $11,245 for glargine-treated patients (standardized difference = 0.3). Similarly, approximately 14% of both cohorts had an inpatient admission during the pre-index period.

Treatment modification

Compared to exenatide-treated patients, a significantly higher percentage of glargine-treated patients modified their treatment, defined as any of discontinuation, switching, or intensification (Figure 1). By the end of 18 months follow up period, 76.0% of patients in glargine cohort experienced treatment modification compared to 69.1% of patients in the exenatide cohort (p<0.0001). A higher percentage of glargine patients intensified treatment with other medications compared to exenatide patients (26% vs. 15.9%, p<0.0001). Alternatively, a higher percentage of exenatide patients switched treatment compared to glargine patients (14.9 vs. 10%, p<0.0001).

Similarly, patients treated with glargine were more likely to modify treatment than exenatide-treated patients at any given point in time (hazard ratio (HR) = 1.33, p<0.0001) (Figure 2). Compared to patients treated with exenatide, patients treated with glargine were more likely to intensify therapy (HR = 1.72, p<0.0001), more likely to discontinue index therapy (HR = 1.25, p<0.0001), and less likely to switch therapies (HR = 0.71, p<0.0001).

Medical costs

As reported in (table 2), mean total medical costs were significantly lower for the exenatide cohort ($19,654) compared to the glargine cohort ($21,322) in 18 months follow-up period (difference = $1,667, p<0.0001). Among the subgroup of patients who continued their treatment on index medication without any modification for 18 months, exenatide-treated patients (n=1,127) had significantly lower healthcare costs of $1,546 compared to glargine-treated patients (n=874) ($18,324 vs. $19,869, respectively, p=0.005). Among the subgroup of patients who intensified their therapy, exenatide-treated patients (n=580) had significantly lower costs of $2,472 compared to glargine-treated patients (n=947) ($19,356 vs. $21,828, respectively, p=0.0011). While point estimates suggest lower costs for exenatide-treated patients.
Table 1: Baseline demographic and clinical characteristics, pre- and post-match.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Pre-Match Patients Treated With</th>
<th>Post-Match Patients Treated With</th>
<th>P-value</th>
<th>Std. Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exenatide (N = 9,197)</td>
<td>Insulin Glargine (N = 4,499)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/Mean %/SD</td>
<td>N/Mean %/SD</td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Age: Mean (years)</td>
<td>54.2 10.1</td>
<td>59.6 12.6</td>
<td><0.0001</td>
<td>7.8</td>
</tr>
<tr>
<td>Sex: Female</td>
<td>5,359 58.3%</td>
<td>1,948 43.3%</td>
<td><0.0001</td>
<td>0.3</td>
</tr>
<tr>
<td>Diabetes Complications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microvascular</td>
<td>1,521 16.5%</td>
<td>1,109 24.6%</td>
<td><0.0001</td>
<td>0.2</td>
</tr>
<tr>
<td>Macrovascular</td>
<td>1,530 16.6%</td>
<td>1,349 30.0%</td>
<td><0.0001</td>
<td>1.7</td>
</tr>
<tr>
<td>Deyo Charlson Comorbidity Index</td>
<td>1.4 1.1</td>
<td>1.8 1.5</td>
<td><0.0001</td>
<td>0.1</td>
</tr>
<tr>
<td>Medication Classes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-index inpatient admissions</td>
<td>815 8.9%</td>
<td>952 21.2%</td>
<td><0.0001</td>
<td>1.0</td>
</tr>
<tr>
<td>Pre-index total healthcare costs</td>
<td>$9,749 $12,251</td>
<td>$14,536 $31,763</td>
<td><0.0001</td>
<td>0.3</td>
</tr>
<tr>
<td>Physician Specialty</td>
<td></td>
<td></td>
<td><0.0001</td>
<td></td>
</tr>
<tr>
<td>Primary care</td>
<td>6,346 69.0%</td>
<td>3,170 70.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endocrinology</td>
<td>1,168 12.7%</td>
<td>210 4.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other specialist</td>
<td>1,016 11.0%</td>
<td>680 15.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing/unknown</td>
<td>667 7.3%</td>
<td>439 9.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment Pre-Index</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose Lowering</td>
<td>9,188 99.9%</td>
<td>4,402 97.8%</td>
<td><0.0001</td>
<td>0.6</td>
</tr>
<tr>
<td>Biguanides (metformin)</td>
<td>6,761 73.5%</td>
<td>2,940 65.3%</td>
<td><0.0001</td>
<td>0.1</td>
</tr>
<tr>
<td>Sulfonylureas</td>
<td>4,252 46.2%</td>
<td>3,011 66.9%</td>
<td><0.0001</td>
<td>0.9</td>
</tr>
<tr>
<td>Meglitinides</td>
<td>466 5.1%</td>
<td>259 5.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>thiazolidinediones</td>
<td>4,688 51.0%</td>
<td>2,382 52.9%</td>
<td>0.090</td>
<td>0.5</td>
</tr>
<tr>
<td>α glucosidase inhibitors</td>
<td>92 1.0%</td>
<td>69 1.5%</td>
<td>0.0065</td>
<td>2.1</td>
</tr>
<tr>
<td>fixed dose therapies</td>
<td>2,293 24.9%</td>
<td>916 20.4%</td>
<td><0.0001</td>
<td>0.9</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>8,493 92.3%</td>
<td>4,111 91.4%</td>
<td>0.049</td>
<td>0.7</td>
</tr>
<tr>
<td>antihyperlipidemics</td>
<td>6,526 71.0%</td>
<td>3,074 68.3%</td>
<td>0.0016</td>
<td>0.6</td>
</tr>
<tr>
<td>antihypertensives</td>
<td>7,693 83.6%</td>
<td>3,814 84.9%</td>
<td>0.091</td>
<td>0.3</td>
</tr>
<tr>
<td>Other</td>
<td>3,164 34.4%</td>
<td>1,308 29.1%</td>
<td><0.0001</td>
<td>1.0</td>
</tr>
<tr>
<td>antidepressants</td>
<td>2,890 31.4%</td>
<td>1,138 25.3%</td>
<td><0.0001</td>
<td>1.6</td>
</tr>
<tr>
<td>antiobesity</td>
<td>82 0.9%</td>
<td>10 0.2%</td>
<td><0.0001</td>
<td>0.5</td>
</tr>
<tr>
<td>antiemetics/antinausea</td>
<td>429 4.7%</td>
<td>260 5.8%</td>
<td>0.0051</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Post-match balance was assessed by evaluating the standardized difference (std. diff.). All standardized differences were less than 2.5, except for mean age, which was 7.8.

Figure 1 Treatment modification in 18 months follow up period.

Figure 2 Hazard ratio of treatment modification relative to exenatide BID.
patients, there were no statistically significant differences in costs for patients who switched (difference $1,162; $21,462 vs. $22,623, respectively, p=0.301). There were no significant differences in costs for exenatide- and glargine-treated patients who discontinued their therapy (difference $948; $20,376 vs. $22,623, respectively, p=0.301). Figure 3 shows the multivariate adjusted differences in total costs between patients on exenatide and glargine, stratified by type of treatment modification.

CONCLUSIONS

This study suggests that the likelihood of treatment modification and mean total medical costs varied for patients initiating exenatide or glargine in a large real-world United States managed care database. Patients initiating treatment with exenatide had significantly lower rates of treatment modification and lower medical costs than patients initiating glargine treatment in 18 months follow up period.

The lower total direct medical costs for exenatide patients found in this study are consistent with the existing literature. Previous studies have shown that exenatide is a cost effective treatment option compared to insulin glargine [8,12,13]. These findings could be due to various reasons. Lage et al. suggested that one possible reason for the lower costs among exenatide-treated patients may be due to the fact that exenatide is associated with weight loss [14-17], and that weight loss is associated with reduced mortality and cardiovascular disease [12,18,19]. In addition, unlike many other glucose-lowering therapies, exenatide use does not have significantly increased risk of hypoglycemic events [20]. Hypoglycemic events cost an average of $916 per emergency room visit and $15,166 per event that requires an inpatient stay [21].

This study also suggests that increased rate of treatment modification was associated with higher total medical costs. Patients initiating treatment with exenatide had lower rates of treatment modification than patients initiating glargine treatment. Glargine-treated patients were more likely to discontinue or intensify treatment compared to exenatide-treated patients but were less likely to switch therapy. Exenatide-treated patients who continued their therapy also had significantly lower medical costs compared to glargine-treated patients. This finding is consistent with existing literature, suggesting that the use of exenatide is associated with higher adherence than patients using glargine [21]. In a review article, Stephens et al reported a consistent relationship between poorer treatment persistence and/or adherence and increased healthcare utilization and costs among patients with diabetes [22]. Encinosa et al. reported a similar finding, reporting that increasing adherence from 50% to 100% reduces hospitalization rates by 23.3% and emergency room visits by 46.2%, while at the same time increasing diabetes-related drug spending by $776 per patient-per year [23].

This study had several potential limitations. First, the use of a claims database limits the definition of diabetes to the occurrence

![Figure 3 Differences in adjusted total costs: Insulin glargine- exenatide BID.](image-url)
of specific diagnosis codes in the claims history, making it
dependent on the accuracy of provider diagnosis and coding.
To offset this potential limitation, this current study required
multiple outpatient claims in the absence of an inpatient or
emergency department claim with a diagnosis of type 2 diabetes.
Second, the dataset used in this study lacks several clinical
variables relevant to the treatment and management of type 2
diabetes, including HbA1c, body weight, body mass index, and
compliance with lifestyle modifications. In the absence of this
information for use in the propensity score matching, diabetes-
related complications, diabetes-related comorbidities and
previous medication use were used as a proxy measure of disease
severity. Third, treatment modification measures were based on
the presence/absence of prescription claims, which may or may
not indicate how the medications were used by the patients. It is
also important to note that this observational study design does
not permit causal inferences. While propensity score matching
was used to reduce potential selection bias, and create two
comparsable patient groups, it does not control for unmeasured
confounding variables. These results apply to a population of
commercially insured patients, retirees, and their dependents
and may not be generalizable to other patient populations. Lastly,
further studies are needed to explore the bases for lower direct
medical costs observed with exenatide use.

With the advancement of personalized medicine, future
studies on type 2 diabetes treatment patterns and outcomes
should focus on differential results by patient characteristics.
This current study was limited in its ability to stratify by patient
race/ethnicity; pharmacogenetic studies suggest that certain
genotypes could significantly affect the efficacy of anti-diabetes
medications [24-28]. Expanding and evaluating personalized
medicine should be able to provide more tailored interventions
and better health outcomes.

SUMMARY

Patients initiating treatment with exenatide had lower
rates of treatment modification than patients initiating insulin
glargin. The use of exenatide was associated with statistically
significant reductions in total costs among all patients, patients
who continued on their index therapy and patients who
intensified their index medication. There was no statistically
significant difference in total post-index costs among patients
who discontinued their index therapy or who switched their
index therapy.

FUNDING STATEMENT

The authors have no conflicts of interest to report. The study
was funded by Eli Lilly and Company and Amylin Pharmaceuticals.
Truven Health Analytics (under its previous name of Thomson
Reuters Healthcare) (MB, BJ, RF, GL) was awarded a research
contract for the conduct of this study from Eli Lilly and Company
(MP). MP is full-time employee and stockholder of Eli Lilly and
Company.

REFERENCES

1. National Diabetes Information Clearinghouse (NDIC). A Service of
the National Institute of Diabetes and Digestive and Kidney Diseases

pharmacologic approaches to improve glycemic control. Curr Med Res
Opin. 2007; 23: 905-917.

3. Cooke CE, Lee HY, Tong YP, Haines ST. Persistence with injectable
antidiabetic agents in members with type 2 diabetes in a commercial

significance of compliance and persistence in the treatment of

Contemporary analysis of secondary failure of successful sulfonylurea

6. Hertz RP, Unger AN, Lustik MB. Adherence with pharmacotherapy for
type 2 diabetes: a retrospective cohort study of adults with employer-

7. Nielsen LL, Baron AD. Pharmacology of exenatide (synthetic
exendin-4) for the treatment of type 2 diabetes. Curr Opin Invest
Drugs. 2003; 4: 401-405.

patients with type 2 diabetes treated with exenatide or sitagliptin

and costs assessment of type 2 diabetes patients initiating exenatide
BID or glargine: a retrospective database analysis. J Med Econ. 2011;
14: 16-27.

10. Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index
1992; 45: 613-619.

11. SAS Institute Inc. Cary, NC, USA.

Evaluation of exenatide vs. insulin glargine in type 2 diabetes:
cost-effectiveness analysis in the German setting. Diabetes Obes Metab.

WJ. Exenatide versus insulin glargine: a cost-effectiveness evaluation
in patients with Type 2 diabetes in Switzerland. Int J Clin Pharmacol

14. DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD, et
al. Effects of exenatide (exendin-4) on glycemic control and weight
over 30 weeks in metformin-treated patients with type 2 diabetes.

analysis of the effects of exenatide treatment on A1C, weight and
cardiovascular risk factors over 82 weeks in 314 overweight patients

exenatide versus insulin analogues on weight change in subjects with

17. Horton ES, Silberman C, Davis KL, Berria R. Weight loss, glycemic
control, and changes in cardiovascular biomarkers in patients with
type 2 diabetes receiving incretin therapies or insulin in a large cohort

18. Williamson DF, Thompson TJ, Thun M, Flanders D, Pampuk E, Byers
T, et al. Intentional weight loss and mortality among overweight

