Short Communication

Vegetable Juices Improved Depression and Anxiety in Slightly Depressed Individuals

Kazumasa Isobe1*, Takanori Kawano2, Yuichi Ukawa2, Yuko M. Sagesaka2, Tomoko Ishizu1, Toru Nanmoku3, Yasushi Kawakami1 and Shinichiro Sasahara4

1Department of Laboratory Medicine, University of Tsukuba, Japan
2Central Research Institute, ITO EN, Ltd, Japan
3Division of Laboratory, University of Tsukuba Hospital, Japan
4Department of Occupational Psychiatry, University of Tsukuba, Japan

Abstract

Aim: The purpose of this study was to assess the effects of vegetable juice on depression and anxiety scores in slightly depressed individuals.

Methods: Sixty-six research participants were randomized to 3 groups: group A, plain vegetable juice; group B, vitamin-fortified vegetable and fruit juice; group C, control. Vegetable juices were administered for 12 weeks. The Beck Depression Inventory (BDI) and State-Trait Anxiety Inventories (STAI) 1 and 2 were administered 4 times and a blood sample was also obtained from each participant for measurements of folic acid, magnesium, and beta-carotene.

Results: A significant decrease in depression and anxiety was found in groups A and B at 12 weeks. In group A, 70% of the participants yielded a decrease of 3 or more points for the BDI and STAI-2 scores, and 80% of them did so for the STAI-1 score. In group B, 50% of the participants yielded a decrease of 3 or more points for the BDI and STAI-1 scores, and 70% of them did so for the STAI-2 score. Among the blood nutrients studied, an inverse linear correlation was found between the BDI score and blood beta-carotene level (Pearson $r = -0.587; P < .01$). The STAI-1 score and blood beta-carotene level were also inversely correlated (Pearson $r = -0.560; P < .05$).

Conclusion: Our findings suggest that vegetable juice intake may be associated with improvement of depression and anxiety in slightly depressed individuals.

INTRODUCTION

Recently, Nanri et al reported that a prudent dietary pattern characterized by a high intake of vegetables, fruits, potatoes, soy products, mushrooms, seaweed, and fish was associated with a decreased risk of suicide [1]. Nutritional factors such as zinc and folic acid could theoretically have an influence on brain structure and function, including mood. Our group also showed that folate correlated with depression and anxiety in apparently healthy individuals [2]. Our preliminary cross-sectional study also showed that intake frequency of vegetable juice is associated with BDI and STAI scores.

Vegetable juice contains many nutrient factors (such as folic acid, magnesium, and beta-carotene) that could affect mental status. In this study, we assessed the effects of vegetable juice on depression and anxiety scores in slightly depressed individuals.

MATERIALS AND METHODS

Research participants

We recruited 66 volunteers (17 men and 49 women, aged 25-60 years; average age, 41.9 ± 13.1 and 40.2 ± 11.2 years, respectively) who had slight depression and anxiety (BDI > 11; STAI-1 or -2 > level 3). The participants were employees of the University of Tsukuba Hospital. At entry, all participants provided written informed consent to participate in the study. The data were collected from May through August 2014 and analyzed in September 2014.

The study protocol was approved by the ethics committee of the Institute of Medicine, University of Tsukuba (no. 836).

Vegetable juice contents

We used 2 kinds of vegetable juice: Ichinitibun no yasai (ITO
Central correlations among the quantitative variables. Statflex version Pearson product moment correlation was used to determine interactions between each group over the study period. The using a chemiluminescence assay (Siemens Healthcare, Japan). Technologies Corporation, Japan). Folic acid levels were measured using an automated analyzer (Hitachi 7700; Hitachi High (HPLC). Serum magnesium and calcium levels were measured was determined using high-performance liquid chromatography (5).

Depression and anxiety scoring

The BDI is used for measuring the severity of depression, and the STAI, for measuring 2 types of anxiety: state anxiety (STAI-1) and trait anxiety (STAI-2).

Measurements of nutrients in blood

Peripheral venous blood samples were collected at around 5 PM into tubes containing serum separator gel. Beta-carotene was determined using high-performance liquid chromatography (HPLC). Serum magnesium and calcium levels were measured using an automated analyzer (Hitachi 7700; Hitachi High Technologies Corporation, Japan). Folic acid levels were measured using a chemiluminescence assay (Siemens Healthcare, Japan).

Statistical analysis

Analysis of variance (ANOVA) was used to evaluate interactions between each group over the study period. The Pearson product moment correlation was used to determine correlations among the quantitative variables. Statflex version 6 software (Ah-tec, Osaka, Japan) was used for all statistical analyses.

RESULTS

Depression and anxiety scores

As shown in (Table 1), the mean BDI scores gradually decreased, and the decrease was significant in groups A (P < .01) and B (P < .05) at 12 weeks. The mean STAI-1 score also gradually decreased in group A and was significant at 4 weeks (P < .05) and 8 weeks (P < .01). The mean STAI-2 scores had decreased after 8 weeks and the decrease was significant in group A at 12 weeks (P < .01) and in group B at 8 weeks (P < .05) and 12 weeks (P < .01).

Blood nutrients

The mean folic acid level had significantly increased in group B at 4 weeks and had increased to its maximum level at 8 weeks. The mean beta-carotene level increased gradually but significantly in group A.

Correlations between mental health scores and biomarkers

Correlations between the mental health scores and blood nutrients levels are summarized in (Table 3). An inverse linear correlation between the BDI score and beta-carotene was found in all participants (Pearson r = -0.587; P < .01). The STAI-1 score and beta-carotene were also inversely correlated (Pearson r = -0.560; P < .05).

DISCUSSION

In the present study, we showed that vegetable juice intake decreased depression and anxiety scores and that the pattern of the effects on depression and anxiety differed according to the kind of juice. [3,4] The plain vegetable juice beverage contains contents equivalent to 350 g of vegetables, with a high content of beta-carotene, magnesium, potassium, and calcium. On the other hand, the vitamin-fortified vegetable juice beverage contains high levels of 12 vitamins.

Lazarou et al reported on the correlation between folic acid deficiency and depression and the role of folic acid in the treatment of depression [5]. On the other hand, Christensen et al reported no clear potentiation of antidepressant medication effects by folic acid or vitamin B12 [6]. In this study, the vitamin-fortified juice intake effectively increased blood folic acid levels and significantly decreased STAI-2 scores after 8 weeks. Even though the effect varied substantially, folic acid seems to be associated with trait anxiety rather than with depression.

Beta-carotene is an antioxidant vitamin that may reduce the risk of mood disorder [7]. However, other than in a mouse experiment, [3] beta-carotene has not been studied for its potential in the management of depression. In the present study, vegetable juice intake significantly increased the blood beta-carotene level, and that level correlated with the BDI and STAI-1 scores. Further investigations such as experiments with beta-carotene-free juice should be conducted.

CONCLUSION

Vegetable juice intake may be associated with improvement of depression and anxiety in slightly depressed individuals.
Table 2: Effects of vegetable juice intake on BDI depression scores and STAI anxiety scores over time.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>4 weeks</th>
<th>8 weeks</th>
<th>12 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain vegetable juice intake, n = 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDI</td>
<td>15.7 ± 6.2</td>
<td>13.4 ± 6.6</td>
<td>12.7 ± 6.7</td>
<td>9.7 ± 6.3**</td>
</tr>
<tr>
<td>STAI-1</td>
<td>51.4 ± 9.9</td>
<td>46.8 ± 9.8*</td>
<td>46.2 ± 10.3</td>
<td>44.5 ± 10.5**</td>
</tr>
<tr>
<td>STAI-2</td>
<td>54.3 ± 9.5</td>
<td>51.7 ± 9.3</td>
<td>51.1 ± 8.2</td>
<td>48.4 ± 8.5**</td>
</tr>
<tr>
<td>Vitamin-fortified vegetable juice intake, n = 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDI</td>
<td>15.7 ± 7.8</td>
<td>14.5 ± 6.8</td>
<td>12.8 ± 6.7</td>
<td>12.1 ± 7.1*</td>
</tr>
<tr>
<td>STAI-1</td>
<td>51.7 ± 8.6</td>
<td>52.2 ± 9.2</td>
<td>51.5 ± 11.8</td>
<td>48.5 ± 9.5*</td>
</tr>
<tr>
<td>STAI-2</td>
<td>54.5 ± 7.5</td>
<td>55.1 ± 7.1</td>
<td>50.9 ± 8.2*</td>
<td>49.1 ± 8.5**</td>
</tr>
<tr>
<td>Control (no juice intake), n = 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BDI</td>
<td>13.7 ± 7.9</td>
<td>15.2 ± 7.4</td>
<td>16.0 ± 9.9</td>
<td>15.5 ± 10.8</td>
</tr>
<tr>
<td>STAI-1</td>
<td>54.4 ± 8.2</td>
<td>53.7 ± 8.7</td>
<td>53.6 ± 10.6</td>
<td>52.6 ± 11.4</td>
</tr>
<tr>
<td>STAI-2</td>
<td>54.0 ± 8.7</td>
<td>53.3 ± 8.4</td>
<td>53.2 ± 10.4</td>
<td>51.7 ± 10.3</td>
</tr>
</tbody>
</table>

Abbreviations: BDI: Beck Depression Inventory, STAI: State-Trait Anxiety Inventory, *P < .05; **P < .01 compared to baseline, aP < .05 compared to no juice intake.

Table 3: Correlations among BDI, STAI, folic acid, Mg, and beta-carotene.

<table>
<thead>
<tr>
<th></th>
<th>BDI</th>
<th>STAI-1</th>
<th>STAI-2</th>
<th>Folic acid</th>
<th>Mg</th>
<th>Beta-carotene</th>
</tr>
</thead>
<tbody>
<tr>
<td>BDI</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAI-1</td>
<td>0.693**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAI-2</td>
<td>0.592**</td>
<td>0.870**</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folic acid, ng/mL</td>
<td>-0.088</td>
<td>-0.363</td>
<td>-0.254</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg, mg/dL</td>
<td>-0.066</td>
<td>0.210</td>
<td>0.195</td>
<td>-0.159</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Beta-carotene, μg/dL</td>
<td>-0.507**</td>
<td>-0.560**</td>
<td>-0.361</td>
<td>-0.011</td>
<td>0.184</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Abbreviations: BDI: Beck Depression Inventory, STAI: State-Trait Anxiety Inventory, *P < .05; **P < .01

ACKNOWLEDGEMENTS

We thank the medical technologists of the University of Tsukuba for providing blood samples and the office clerks of the university who participated actively in this study. Ms Flaminia Miyamasu, a native-speaking English teacher, provided many valuable comments regarding the English of this paper.

This study was supported by a grant from Tsukuba Medical Laboratory of Education and Research. The vegetable juices used in this study were kindly provided by ITO EN.

REFERENCES

Cite this article