Hypomagnesemia Associated with Caroli’s Disease

Mohsen El Kossi*
Doncaster and Bassetlaw Teaching Hospitals, Doncaster, UK

INTRODUCTION

Caroli’s disease is a rare disorder characterized by a combination of intrahepatic bile ducts dilatation and cystic renal disease and is diagnosed by imaging [1]. In cholestatic conditions as in Caroli’s disease, fat soluble vitamin absorption including vitamin D is impaired [2]. This vitamin is commonly deficient in CKD patients [3,4]. Serum vitamin D level therefore is expected to be low in Caroli’s disease. Hypomagnesemia may be one of the biochemical consequences of this deficiency. In these 2 case reports who were admitted with hypomagnesemia which improved partially with vitamin D level correction. Partial correction of serum magnesium raises the question of a possible other mechanism as urinary wasting that might explain this biochemical abnormality in this condition.

CASE PRESENTATION

Case 1

66 years old lady with a diagnosis of Caroli’s disease, polycystic kidneys disease (PKD) referred to renal services for follow up of deteriorating kidney function. She developed symptoms of muscle weakness and numbness of extremities. Routine investigations revealed CKD4 with an eGFR of 18 ml/min. This was associated with hypokalemia, hypomagnesemia and hypocalcaemia as shown in Table 1. Patient regular medications included Lansoprazole, Alfacalcidol, Loop Diuretic and Ciprofloxacin. The latter was given daily as a prophylaxis of liver cysts infection. She was admitted for intravenous (IV) potassium, magnesium and calcium infusion. Loop diuretic stopped and Lansoprazole replaced by Ranitidine. Symptoms improved with correction of biochemical abnormalities. She was discharged on oral magnesium glycerophosphate which she could not tolerate because of diarrhoea. Few months later she was readmitted with similar symptoms and biochemical abnormalities. On this occasion 25 OH Vitamin D serum level was checked and was low as shown in Table 1. Urinary fractional excretion of magnesium was inappropriately high. Magnesium mal-absorption and inappropriate urinary wasting are potential explanations of hypomagnesemia.

*Corresponding author
Mohsen El Kossi, Doncaster and Bassetlaw Teaching Hospitals, Renal Unit, Armthorpe Road, Doncaster, DN2 5LT, UK
Tel: +44-130-236-6666
Email: elkossi@gmail.com
Submitted: 27 January 2017
Accepted: 20 March 2017
Published: 05 April 2017
Copyright: © 2017 El Kossi
OPEN ACCESS

Keywords
• Caroli’s disease
• Hypomagnesemia
• Polycystic kidney disease

Cite this article: El Kossi M (2017) Hypomagnesemia Associated with Caroli’s Disease. Int J Rare Dis Orphan Drugs 2(1): 1004
significant amount of weight within the 2 years follow up period.

Case 2

50 years old lady diagnosed with Adult polycystic kidney disease in 1982 with strong family history of PKD suggesting autosomal dominant inheritance (ADPKD). Genetic testing was not done to confirm the responsible gene mutation. In 2003, she underwent cholecystectomy and left hepatectomy because of common bile duct and intrahepatic biliary stones. She was found to have cystic changes in the biliary channels consistent with Caroli’s disease. She was referred to the renal department because of worsening kidney function with CKD4. Her main complaint on referral was intense pruritus which failed to respond to most of the antihistamines, Ursodeoxycholic acid, Rifampicin, Naltrexone or Gabapentin. She did respond only to recurrent Molecular Adsorbents Recycling System (MARS). Liver function tests (LFTs) were deranged reflecting cholestatic picture. Synthetic liver functions were normal. In 2008 she was admitted with clinical picture, biochemical changes and imaging all consistent with the diagnosis of acute pancreatitis and commenced on pancreatic enzyme supplement. In one of the routine follow up visits she complained of pins and needles in her hands. Corrected calcium, magnesium and vitamin D serum levels were all low at 1.77 mmol/L, 0.56 mmol/L and 22 nmol/L respectively. She was given IV calcium and magnesium infusion and she was already receiving daily dose of the active vitamin D alfalcacidol. She received high doses of native vitamin D (colecalciferol) as a replacement therapy. Repeat check of vitamin D was 58.8 nmol/L. Serum magnesium level remained low despite of advanced CKD with an eGFR of 13.8 ml/min. It was difficult to replace Esomeprazole because of severe gastritis. Whilst haemodialysis (HD) treatment improved serum calcium, it did not reach reference range ([Ca] 1.79 mmol/L). Both patients presented with hypomagnesemia which is an uncommon finding in patients with advanced renal failure. Surprisingly enough, serum magnesium levels is generally elevated in chronic kidney disease (eGFR<30ml/min) and patients on HD [9]. Mutations of TRPM6 cause familial hypomagnesemia with secondary hypocalcaemia [10,11]. Whether mutation in any of these TRP genes is responsible for production of abnormal proteins that are involved in magnesium handling remains unknown. Unfortunately, genetic study of these cases was not performed which might have added more light on the pathophysiology of hypomagnesemia. Both patients presented with hypomagnesemia which is uncommon finding in patients with advanced renal failure. The fine adjustment of magnesium loss takes place in the distal tubule where 5-10% of the filtered load is reabsorbed actively through a transcellular route via the TRPM6 [12]. Magnesium homeostasis in these cases will depend largely on increased fractional urinary magnesium excretion to compensate for reduced excretory function of the kidneys. The fine adjustment of magnesium loss takes place in the distal tubule where 5-10% of the filtered load is reabsorbed actively through a transcellular route via the TRPM6. Around 3-5% of the filtered load is excreted in the urine [16].

Urinary magnesium wasting is suggested when daily magnesium loss is in excess of 10 mg or MFE of more than 2% in the presence of normal kidney function and hypomagnesemia. Urinary magnesium in our cases is complicated by the advanced renal failure with the characteristic compensatory increase in MFE to maintain normal serum magnesium which makes reliability of this test in our cases would be questionable. Reasons are partly

DISCUSSION

Pathophysiology of Caroli’s disease is unclear although mutation of polycystic kidney and hepatic disease 1 gene (PKHD1) is implicated in many cases with Caroli’s disease associated with autosomal recessive PKD [5]. Fibrocystin function which is the protein product of this gene [6] is also unclear [7]. Rare cases of Caroli’s disease are associated with ADPKD. The protein products of ADPKD genes polycystin 1 and 2 are unrelated to fibrocystin although there might be an interrelationship between both in the development of cystic kidney changes [8]. It’s unknown that any of these proteins are involved in magnesium handling in the gastrointestinal tract or kidneys. Polycystin 1 and 2 proteins are known as cation-selective ion channels transient receptor potential (TRPP). This subfamily bears some structural similarity to a member of the TRP superfamily called TRPM6 [9]. Mutations of TRPM6 cause familial hypomagnesemia with secondary hypocalcaemia [10,11]. Whether mutation in any of these TRP genes is responsible for production of abnormal proteins that are involved in magnesium handling remains unknown. Unfortunately, genetic study of these cases was not performed which might have added more light on the pathophysiology of hypomagnesemia. Both patients presented with hypomagnesemia which is uncommon finding in patients with advanced renal failure. The fine adjustment of magnesium loss takes place in the distal tubule where 5-10% of the filtered load is reabsorbed actively through a transcellular route via the TRPM6. Around 3-5% of the filtered load is excreted in the urine [16].

Table 1: Biochemical results of Case 1

<table>
<thead>
<tr>
<th>Date</th>
<th>Cr (umol/L)</th>
<th>Uric (mmol/L)</th>
<th>eGFR (ml/min)</th>
<th>K (mmol/L)</th>
<th>Ca (mmol/L)</th>
<th>P (mmol/L)</th>
<th>Mg (mmol/L)</th>
<th>PTH (pmol/L)</th>
<th>25OH-Vit D (polmol/L)</th>
<th>Alb (g/L)</th>
<th>ALP (IU/L)</th>
<th>Bil (umol/L)</th>
<th>AST (UL/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.201</td>
<td>243</td>
<td>12.6</td>
<td>18.2</td>
<td>3.9</td>
<td>1.79</td>
<td>1</td>
<td>0.33</td>
<td>31.5</td>
<td>39</td>
<td>249</td>
<td>3</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>5.201</td>
<td>216</td>
<td>19</td>
<td>21</td>
<td>3.5</td>
<td>2.12</td>
<td>1</td>
<td>0.55</td>
<td>20.7</td>
<td>22</td>
<td>142</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.201</td>
<td>199</td>
<td>17</td>
<td>22</td>
<td>3.4</td>
<td>2.34</td>
<td>0.9</td>
<td>0.54</td>
<td>13.2</td>
<td>55.7</td>
<td>25</td>
<td>146</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Biochemical results of Case 2

<table>
<thead>
<tr>
<th>Date</th>
<th>Cr (umol/L)</th>
<th>Uric (mmol/L)</th>
<th>eGFR (ml/min)</th>
<th>K (mmol/L)</th>
<th>Ca (mmol/L)</th>
<th>P (mmol/L)</th>
<th>Mg (mmol/L)</th>
<th>PTH (pmol/L)</th>
<th>25OH-Vit D (polmol/L)</th>
<th>Alb (g/L)</th>
<th>ALP (IU/L)</th>
<th>Bil (umol/L)</th>
<th>AST (UL/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.201</td>
<td>247</td>
<td>12.2</td>
<td>19.2</td>
<td>3.8</td>
<td>2.04</td>
<td>1.1</td>
<td>0.55</td>
<td>76.3</td>
<td>31</td>
<td>1736</td>
<td>3</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>5.201</td>
<td>328</td>
<td>17.1</td>
<td>13.8</td>
<td>4.1</td>
<td>2.3</td>
<td>1.5</td>
<td>0.59</td>
<td>12.6</td>
<td>58.8</td>
<td>26</td>
<td>657</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6.201</td>
<td>420</td>
<td>15.3</td>
<td>10.3</td>
<td>4.5</td>
<td>2.58</td>
<td>1.9</td>
<td>0.69</td>
<td>10.3</td>
<td>51.3</td>
<td>29</td>
<td>921</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
due to reduced eGFR and partly due to inevitable magnesium gain from dialysis treatment. Therefore, the contribution of excessive urinary magnesium loss as a cause of hypomagnesemia in these cases in addition to gastrointestinal malabsorption would be very difficult to ascertain. Partial response to calcitriol treatment is not unexpected. Of interest both patients were already receiving the active form of vitamin D alfacalcidol when they presented with hypomagnesemia. Nesibe and Sinasi have reported \cite{17} a positive role of vitamin D in the treatment of familial hypomagnesemia. Calcitriol increases also gastrointestinal magnesium absorption \cite{18,19}. Vitamin D deficiency is not uncommon in patients with CKD \cite{20,21}. Moreover, fat soluble vitamins absorption may be impaired in Caroli’s disease due to cholestasis, hence serum levels of this vitamin would be even worse. There is also a theoretical risk of reduced vitamin D hydroxylation in cases with cholestasis albeit denied by others \cite{22}. Lack of hydroxylation in these cases may explain the poor response of hypomagnesemia to alfacalcidol but does not explain the partial response to native vitamin D replacement.

CONCLUSION

These case studies report for the first time unexplained hypomagnesemia in Caroli’s disease. Of interest it did happen in the context of chronic kidney disease with or without haemodialysis treatment which is a confounding factor. The exact cause of hypomagnesemia remains unclear and would be a subject for further investigations. Correction of vitamin D deficiency could be one of the treatment options amongst others for this biochemical abnormality. The recommended preferred form of vitamin D replacement in these cases needs further investigations.

ACKNOWLEDGEMENT

We are very grateful to four anonymous reviewers for their comments and peer-review.

DISCLOSURE

The author declares no conflicts of interest.

REFERENCES

El Kossi (2017)
Email: elkossi@gmail.com

About the Corresponding Author

Dr. Mohsen El Kossi
Summary of background:
I'm currently consultant Renal Physician Doncaster Teaching Hospital.
Education:
MBBCh (1985), Assiut, Egypt
MSc (1990), Assiut Egypt
MD (1997), Assiut, Egypt
Diploma of Health Research (2003) Leeds University, UK
MD (2005) Sheffield University, UK
MRCP 2003 (UK)
Certificate of Health Education (2016) (Sheffield Hallam University, UK)

Current research focus:
• Principle investigator of 7 RCTs.
• Chief investigator of 2 RCTs about HIF stabilizers in chronic kidney disease patients with Anaemia.

International Journal of Rare Diseases & Orphan Drugs

International Journal of Rare Diseases & Orphan Drugs is a peer-reviewed journal that aims to publish scholarly papers of highest quality and significance in the field of basic science, diagnosis, prevention, treatment of rare diseases and development of orphan drugs. The journal publishes original research articles, review articles, clinical reports, case studies, commentaries, editorials, and letters to the Editor.

For more information please visit us at following:
Aims and Scope: https://www.jscimedcentral.com/RareDiseases/aims-scope.php
Editorial Board: https://www.jscimedcentral.com/RareDiseases/editors.php
Author Guidelines: https://www.jscimedcentral.com/RareDiseases/submitpaper.php
Submit your manuscript or e-mail your questions at rarediseases@jscimedcentral.com

Cite this article