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Abstract

Popular models for longitudinal data analysis with continuous outcomes such as 
linear mixed-effects model and weighted generalized estimating equations lack 
robustness in the presence of outliers. For example, in a study to evaluate the efficacy 
of a sexual risk-reduction intervention for sexually active teenage girls in low-income 
urban settings, some adolescent girls reported very large numbers such as 450 and 
even 1,000,000 for their unprotected vaginal sex over a three-month period. Although 
answers like this are clearly not legitimate values of the outcome, they do indicate 
the extremely high level of sexual activity among these girls and thus should not be 
completely ignored. However, the mean-based GLMM and WGEE are not capable 
of dealing with this type of “ outliers”, due to the sensitivity of the sample mean 
to values of extremely large magnitude. Rank based methods such as the popular 
Mann-Whitney-Wilcoxon (MWW) rank sum test are more effective alternatives to 
address such outliers. Unfortunately, available methods for inference are limited to 
cross-sectional data and cannot be applied to longitudinal studies, especially in the 
presence of missing data.  

In this paper, we propose to extend the MWW test for comparing multiple groups 
within a longitudinal data setting, by utilizing the function response models. Inference 
is based on a class of U-statistics weighted generalized estimating equations, which 
provides consistent estimates, with asymptotic normal distributions, not only for complete 
data but also for missing data under MAR, the most popular missing mechanism in real 
studies. The approach is illustrated with data from both real and simulated studies. 

INTRODUCTION
Popular models for longitudinal data analysis with continuous 

outcomes such as linear mixed-effects models (GLMM) and 
weighted generalized estimating equations (WGEE) lack 
robustness in the presence of outliers. For example, in a study to 
evaluate the efficacy of a sexual risk-reduction intervention for 
sexually active teenage girls in low-income urban settings, a group 
at elevated risk for HIV, some adolescent girls reported very large 
numbers such as 450 and even 1,000,000 for their unprotected 
vaginal sex over a three-month period [1]. Although answers 
like this are clearly not legitimate values of the outcome, they do 
indicate the extremely high level of sexual activity among these 
girls, as compared to the rest of the study sample, and should 
not be removed for analysis. However, the mean-based GLMM 
and WGEE are not capable of dealing with this type of “outliers”, 
due to the sensitivity of the sample mean to large values. On 
the other hand, rank based methods such as the popular Mann-

Whitney-Wilcoxon (MWW) rank sum test are more effective to 
address such outliers. However, available methods for inference 
are limited to cross-sectional data and cannot be applied to 
longitudinal data, especially in the presence of missing data. In 
this paper, we address this issue by extending the MWW test to a 
longitudinal data and multi-group setting within the framework 
of the functional response models (FRM). Inference for the FRM-
based model is achieved by a class of U-statistics based weighted 
generalized estimating equations (UWGEE). The approach is 
illustrated with data from both real and simulated study data. 
In Section  data application in sexual health research as well as 
simulated data to study the behavior of the estimate for small to 
moderate sample sizes.

MULTI-SAMPLE MANN-WHITNEY-WILCOXON 
TESTS

We first briefly review the classic Mann-Whitney-Wilcoxon 
rank sum test for between-group difference. We then discuss 
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limitations of existing modeling paradigms to extend it for multi-group comparison within a longitudinal data setting and how the 
functional response model overcomes such difficulties to achieve the needed generalization.  

The mann-whitney-wilcoxon rank sum test

Consider two independent samples with size nk and let yki be some continuous outcome from the i th subject within the k th group 
(1≤i≤nk, k=1,2). Let Rki denote the rank of yki in the pooled sample. The Wilcoxon rank sum statistic has the following form [2,3]: 

1

1
=1

Wilcoxonranksumstatistic : = .
n

n i
i

W R∑

Note that the sum of the rank scores 2
2=1

n
jj

R∑  from the second group may also be used as a statistic. However, since the two sums 

add up to ( )1
2
+n n  ( )1 2= +n n n ,only one of the sums can be used as a test statistic. An alternative form of this test is the following 

Mann–Whitney statistic [4,3].: 

{ }
1 2

02 1=1 =1
Mann Whitneystatistic : = ,

− ≤
− − ∑∑

n n

n y yj ii j
U I 	         		        (1)

where { }0uI ≤  is a set indicator with { }0 = 1uI ≤  if u ≤ 0 and 0 otherwise. Since ( )1 1 1
=

2n n

n n
W U

+
+  (in the absence of ties), the two tests are 

equivalent. However, since it is easier to extend the Mann–Whitney version for multi-group comparisons with longitudinal data in the 
presence of missing values, we focus on (1) and refer to it as the Mann–Whitney–Wilcoxon rank sum test in the remaining discussion 
unless otherwise stated.  

Let 
1

=
2n n

n
V U

−
 
 
 

 be the normalized Mann–Whitney–Wilcoxon statistic in (1) and θ = E(Vn), where 
2
n 
 
 

 denotes combinations of 2 

distinct elements (i,j) from the integer set {1,…, n}. If yki have the same distribution, then 1=
2

θ . Although the reverse is generally not 

true, 1=
2

θ  is often considered as the null hypothesis of no between-group difference in practical applications. This connotation is 
adopted in the following discussion unless otherwise stated. Inference about H0 has been discussed in the literature [5,3]. Below, we 
extend this classic test to more than two samples as well as longitudinal data. We start with a brief review of a new class of regression 
models, which forms the premise for such extensions.  

Functional Response Models (FRM)

Existing semi-parametric (distribution-free) regression models are all defined based on a single-subject response. For example, 
the most popular linear regression model is defined by: ( )| =i i iE y βΤx x , where yi (xi) denotes some response (a vector of predictors 
or covariates) and β is a vector of parameters. In this model, the response variable is a single-subject response yi. Although the linear 
regression model has been extended for modeling more complex types of response variables such as binary, the fact remains that 
the specification of the model only involves a single subject response. For example, in the generalized linear model defined by: 

( ) ( )| =i i iE y h βΤx x , the right side is generalized to be a function of the linear predictor, βΤix , to accommodate the non-linear response 
yi, but the left side remains identical to the linear model.  

The inherent weakness of such single-subject-response-based regression models is their limited applications to modeling the 
moments of a response. As a result, many popular statistics that are complex functions of higher-order moments cannot be studied 
under the regression paradigm. The functional response models (FRM) address this limitation by extending 1) the single-subject yi to 
multiple subject outcomes; and 2) the linear response to an arbitrary function: 

1 1 1
, , | , , = , , ; ,i i i i i iq q q

E f y y h β    
        

x x x xK K K  (2)

where f(.) is some functional, h(.)  some smooth functional (with continuous second-order derivatives).  By generalizing the response 
variable in this fashion, this new class of models has been successfully applied to address a range of methodological issues involving 
second-order moments such as those arising in modeling reliability indices [6-9], modeling population mixtures [10] and structural 
equation models [11] as well as between-subject attributes such as in modeling social network connectivity [12,13] nonparametric 
inference for stochastic hypotheses in gene expressions [14] and causal inference for rank-based models [15]. Below, we focus on its 
application to the current context of extending the MWW test to multiple comparison groups within a longitudinal data setting.  

FRM-based Multi-sample MWW Tests

Adopting the previous notation, let 

( ) { } ( ) 1 2
1 2 1 1

1 2
, = , = , ,θ θ

≤
∈ ∈

n n
i j y yi j

f y y I h i C j C         (3)

 where 1 = {1, , }
nk

kC nK . Consider the following FRM: 

( ) ( ) 1 2
1 2 1 1, = = , , .θ θ  ∈ ∈ 

n n
i jE f y y h i C j C
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Under the null of no between-group difference, 0
1: =
2

H θ . As will be seen in Section 3.1, this FRM yields the classic MWW test. By 
framing the MWW test under FRM, we are ready to extend this test to a multi-group setting.  

Note that when ties are present, 0
1: =
2

H θ  does not imply no difference between the groups. The null in this case may be expressed 
as [16]: 

{ } { }0 < =1 2 1 2

1 1: = .
2 2y y y yi j i j

H E I E I
   
   +
   
   

Thus, we may redefine the functional response in (3) as 

( ) { } { }1 2 < =1 2 1 2

1, =
2i j y y y yi j i j

f y y I I+ .

For notational brevity, we assume continuous yki throughout the discussion unless otherwise noted.  

Now consider K groups and let 

( ) { } ( )

( )( )12 1 23 2 1

, = , = ,

= , , , , , , , ,

ki lj kly yki lj

K K K K

f y y I h θ θ

θ θ θ θ θ θ

≤

Τ

−K K K

		            (4)

( ) 21 1, , , ,
n n Kk li C j C k l C∈ ∈ ∈

where ( ){ }2 = , ; , {1, , }, <KC k l k l K k l∈ K  denotes all distinct ordered combinations of (k,l) from the integer set {1,2,…, K}. Consider the 
following FRM: 

( )
( ) ( ) 21 1

, =

= , , , , .

ki lj

n n Kk l
kl

E f y y

h i C j C k l Cθ θ

 
 

∈ ∈ ∈
 		             (5)

 If no difference exists across all the K samples, then

1=
2klθ  for all ( ) 2, Kk l C∈  and vice versa. Thus, we can test the null hypothesis, 0

1: =
2klH θ , ( ) 2, Kk l C∈ , to determine if there is any 

difference across the K samples. If this omnibus test is rejected, we may follow with pair-wise comparisons to identify the sources of 
differences.  

We can also readily extend the FRM-based multiple MWW model to a longitudinal data setting. For convenience, consider a 
longitudinal study with only two groups and m assessments. Let ykit denote the outcome from the ith subject within the K th group at 
time t, and let ( ) =t t th θ θ . The FRM for the longitudinal data is defined by: 

( )
( ) ( )

1 2

1 2
1 2 1 1

, =

, = , , ..., , , .

it jt

n n
t m

E f y y

h i C j Cθ θ θ θ θ Τ

 
 

∈ ∈
	 (6)

 If there is no treatment difference over time, we have: 0
1: =
2tH θ  for all t = 1,….,m.  

INFERENCE FOR FRM-BASED MANN-WHITNEY-WILCOXON TESTS
We start with cross-sectional data and then extend the results to longitudinal data.  

Cross-sectional Data

Consider K groups and let 

( ) ( ) ( ) ( )( )1 2 1 2 3 11 2 1 2 3 1
= , , , , , , , , ,i i i Ki i i KiK iK KK

f y y f y y f y y f y y
Τ

− −
  
 if K K 	 (7)

( )( ) ( )( )12 1 23 12 1 231 1= , , , , , , = , , , , , ,K KK K K Kh h h h θ θ θ θ θ
Τ Τ

− −ih K K K K

Where ( )1= , , Ki i ∈i K  1 2
1 1 1=
n n nKC C C C⊗ ⊗ ⊗L  (⊗  denotes the Cartesian product of 1

nkC  = 1, ,k KK ). Define a set of U-statistics 
based generalized estimating equation (UGEE) as follows: 

( ) ( ),= = = ,n n
C C

G Sθ θ
∈ ∈
∑ ∑i i i
i i

U U 0 	 (8)
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 Where Si = fi - hi and Gi is some known ( ) ( )1 1
2 2

K K K K− −
×  matrix function of θ. Like the standard GEE [17] the choice of Gi 

is not unique. In most applications, we set 1 1= =G D V V
θ

− −∂ 
 ∂ 

i i ih , where V denotes some known ( ) ( )1 1
2 2

K K K K− −
×  such as 

( ) ( )1 1
2 2

= K K K KV − −
×

I .  Further, V(α)  may be parameterized by some vector α. If α is unknown, it must be estimated before the UGEE in 

(8) can be solved for θ. The UGEE estimate $θ  obtained as solution to (8) is consistent and asymptotically normal.  

Although the consistency of $θ  is independent of how α is estimated, the asymptotic normality of such estimates is guaranteed only 
when n -consistent estimates of α are used [3]. We summarize the asymptotic properties below.  

Theorem 1.  Let 

( ) ( ) ( ),= | , = , = , =ki n ki k kiE y Var B E G D D
θ

Τ ∂
Σ

∂i i i i iv U v h , 	 	 (9)

2

=1

= , = < , = 1, , .lim
K

k k
n kk

nn n k K
n

ρ
→∞

∞∑ K

 Then, under mild regularity conditions, we have:

1.  $θ  is consistent.

2.  If ( ) ( )= 1pn α α− O) , $θ  is asymptotically normal: 

$( ) 2 1

=1

, = .
K

d k k
k

n N B Bθθ θ ρ − −Τ
 
 − → Σ Σ
 
 

∑0 			   (10)

The asymptotic variance Σθ generally is not in closed-form, except under some special cases. For example, if K = 2, we have 

( ) ( ) 22
1 2 1 2 1 2= 1 , = ,i jE F y E F yθ θ  Σ − − Σ −    	 (11)

 where  Fk (y) Fk(y) denotes the cumulative distribution function of yki. Further, under the null

( ) ( )0
1: = ,  =
2kH F y F y θ . 

It follows from (10) and the fact that F(yki) is a uniform U between 0 and 1 that 

( )2
1 2

1 1 1= 1 = , = .
4 12 12

E UΣ − − Σ

Thus in this special case,

( )2 2
1 2

1=
12θ ρ ρΣ +  and a consistent estimate is given by

1 2

1=
12

n n
n n

θ
 

Σ + 
 

�  (n = n1 + n2. These asymptotic results for the classic MWW test has been well documented in the literature [18,5].  

For general K, a consistent estimate of Σθ is obtained by substituting respective consistent estimates in place of B and Σk. A consistent 
estimate of B is

1=
C

ll

B G D
n

Τ
∈∑∏ i ii

� . 

To find a consistent estimate of Σk, first note that we can estimate

( ), |n kik
E yiU

by:  ( ) ( ) ( ), , , , , , , ,1 1 1,1

1 ˆˆ | = , = 1, , .n ki n i i i i ik k k k Kl l k i nl l
l k

E y k K
n

θ
− +≠ ≤ ≤

≠

∑∏iU U
K K

K 	 (12)

 Thus, a consistent estimate of Σk is given by: 

( ) ( ), ,
=1

1ˆ ˆ ˆ= | | .
1

nk

k n ki n kik kk ik

E y E y
n

Τ∑
− ∑ i iU U 	(13)

Under the null ( )0 1
2

1:
2 K KH θ −= 1 , where 1K denotes a K X 1 column vector of one’s, we can evaluate (12) by substituting ( )1

2

1
2 K K−1  

in place of θ̂ .  We can test H0 by a Wald-type statistic: 
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( ) ( ) ( )

1
2

1 1 1
2 2 2

1 1= ~ .
2 2K K K K K KW n θθ θ χ

Τ −

− − −

   
   − Σ −
   
   

1 1
� � � 	 (14)

 As a special case with K = 2, 11 ˆ= ,  
2 θθ −∑ ,  is a scaler and (14) reduces to 1 2 2

1
1ˆ ˆ= ( ) ~
2

W n θ θ χ−∑ − , a widely used asymptotic result 
for inference about group differences when using the MWW test [18,5].    

Longitudinal data

We first consider the case of complete data and then generalize it to address missing values.  

Complete data: 

Let 

( ) ( )1 2 , 1 21 2
= , , ..., , = , , ,ki ki ki ki m t i t i t Ki tk k k k K

y y y y y y
Τ

iy f f K 	  	 (15)

( ) ( )( ),1 ,2 , 12, 1 , 23, 1 ,= , , ..., , = , , , , , ,m t t K t t K K th h h h
ΤΤΤ Τ Τ

−i i i i i,f f f f h K K

( ) ( )( ),1 ,2 , 12, 1 , 23, 1 ,= , , ..., , = , , , , , ,m t t K t t K K tθ θ θ θ θ
ΤΤΤ Τ Τ

−i i i ih h h h K K

( )1 2= , , ..., .mθ θ θ θ
ΤΤ Τ Τ

 Inference about  θ does not create any complication and can be made using the same UGEE in (8), with fi  and hi (θ) defined 

in (15). In particular, by setting 1=G V
θ

−∂ 
 ∂ 

i ih  with ( ) ( )1 1
2 2

= K K m K K
m

V − −
×

I , we can solve the UGEE in closed form to obtain: 

=1

1ˆ =
K

Ck kn
θ

∈∑∏ ii
f . As a special case, if K = 2, this reduces to the familiar MWW statistic at each assessment t: 

{ } { } { }1 1 2 1 1 2 2 2 1 21 2
1 2,1 1

1ˆ = , , , .
y y y y y yi j i j im jmn n

i C j C

I I I
n n

θ
Τ

≤ ≤ ≤

∈ ∈

 
 
 
 

∑ K 	 (16)

It follows from Theorem 1 that the UGEE estimate θ̂  in (16) is consistent and asymptotically normal. The asymptotic variance can 
again be estimated by (13). Because of the difference in the definition of fi and hi, the null of no difference between the K groups over 
time has a different expression, ( )0 1

2

1:  
2 K K

m
H θ −= 1 , and accordingly the Wald statistic in (14) is given by: 

( ) ( ) ( )
1 2

1 1 1
2 2 2

1 1ˆˆ ˆ= ~ .
2 2K K K K K K

m m m
W n θθ θ χ

Τ

−
− − −

   
   − ∑ −
   
   

1 1 		  (17)

 As a special case with K = 2, 1=
2 mθ 1 , (17) reduces to 2~ mW χ .  

Missing data:

Define a vector of missing (or rather observed) value indicators as follows: 

( )1 2

1 if isobserved
= , = , , ..., .

0 if isunobserved
ki tk

ki t ki ki ki ki mk k k k kki tk

y
r r r r

y

Τ



r

 (18)

As in the literature, we assume no missing data at baseline t = 1 such that 1 1kik
r ≡  for all 1

nk
ki C∈ . Let

( ) 1= Pr = 1| , , =( ,..., ) ,ki t ki t ki ki ki ki ki mk k k k k k k
rπ Τ Τ Τy x x x x 		  (19)

( )( ), 1 2 1 2 3 11 2 1 2 3 1
= , , , , , ,t i t i t i t Ki t i t i t Ki tK i tK KK

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
Τ

− −i K K

( ) ( ),1 ,2 ,= , , , , = , = ,
ki tk

m ki tk ki tk

r
diagϕ ϕ ϕ ϕ ϕ ϕ

π

ΤΤ Τ Τ
i i i i i iÄK

Where diag (φi) denotes a diagonal matrix with φi forming the diagonal, kik
y  is defined in (15), and kik

x denotes a vector of other 
variables collected. Since 1 1kik

r ≡ , 1 = 1kik
π  for all 1

nk
ki C∈ .  

In most applications, ( ) = 2, ,ki tk
t mπ K   is unknown and must be estimated. Under MCAR, ki tk

π  is independent of kik
y  and thus 

( ) = Pr = 1 =ki t ki t ktk k
rπ π . In this case, ktπ  is a constant independent of kik

y  and is readily estimated by the sample moment: 
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=1

1= , = 2, , ; = 1, , .
nk

kt ki tkk ik

r t m k K
n

π ∑�
K K

Under MAR, ki tk
π  becomes dependent on the observed ki tk

y  and ki tk
x , which within the current context contain all ki sk

y and 

ki sk
x for s = 1,…,t-1. Denote such a “ history” by =( , ; = 1, , 1)ki s ki ski t k kk

s t Τ
− −z y x K . Then under MAR, 

1 if = 1,
=

Pr = 1| if = 2, , .ki tk ki t ki tk k

t

r t m
π

−




 
 
 

z K
				    (20)

 Unlike the definition in (19), ki tk
r  does not depend on ki tk

y  and ki tk
x , making it possible to model ki tk

π  in (20). However, it is 

still difficult to model and estimate ki tk
π  without imposing the monotone missing data pattern (MMDP) assumption, because of the 

large number of missing data patterns [3,16]. Under MMDP, ki tk
y  and ki tk

x  are observed only if all ki sk
y  and ki sk

x prior to time t are 

all observed. The structured patterns reduce not only the number of missing data patterns, but also the complexity in modeling kitπ .  

Let ( )1= = 1| = 1,ki t ki t ki t ki tk k k k
p E r r −−

 
 
 

z  denote the one-step transition probability from observing the response at t-1 to t. We 

can readily model ki tk
p  using a logistic regression model: 

( )logit = , = , = 2, , ,ki t kt kt kt ktki t ki tk k k
p g t mγ ξ ηΤ

− −
 

+ 
 

z z K 		  (21)

where ( )= ,kt kt ktγ ξ η
ΤΤ  denotes the model parameters.  More complex forms of ,kt kt ki tk

g γ −
 
 
 

z  such as those involving interactions of 

the components of 
ki tk

−z  are similarly considered. Under MMDP, it is readily checked that 

( ) ( ) ( )1
=2

= Pr = 1| = , = 2, , ,
t

ki t k ki s kski t ki tk kk k s

r p t mπ γ γ−−
 
 
  ∏z K 	 (22)

 where ( )2= , ,k k kmγ γ γ
ΤΤ ΤK .  

At this point, we can proceed in one of two ways. We can either estimate ki tk
π  from ki tk

p  in (21) using the relationship in (22) 
and incorporate such information into the UGEE in (8) or define a new FRM to model ki tk

y  and ki tk
r  simultaneously. We discuss both 

approaches below.  

To estimate γk, we can use the following estimating equations based on maximum likelihood: 

( ) ( ), , , , 2 ,
=1

= = = , , , = 1, , ,
nk

n k k n ki n ki n ki n ki mk k k k
ik

k Kγ
Τ

Τ Τ∑Q Q 0, Q Q QK K 	 (23)

where 

( ) ( ) ( ) ( ){ }, 1= log 1 log 1 ,n ki t ki t ki t ki t ki tki tk k k k kkkt
r r p r p

γ −
∂  + − −  ∂

Q 	 (24)

1= 2, , , , = 1, , .
nk

kt m i C k K∈K K

Let 

( ) ( ) ( ) ( ) ( )( ), ,1 1 1= , , , = 1, , ,n ki k n kim k m K kk k
k Kγ

Τ
Τ Τ Τ

− × − − × −W 0 Q 0 K

Where 0J  denotes a  J×1 column vector of 1’s. Let ( )2= , , mγ γ γ
ΤΤ ΤK . We may express (23) in a compact form: 

( ) ( )
1

, ,1 ,1
=1 =1 =1 =11

= = , , =
n n nK k K

n n ki k n i n Kik K
k i i ik K

γ γ

Τ
 
 
 
 
 

∑∑ ∑ ∑W W Q Q 0.K

To incorporate the estimated ki tk
π  into the estimate of θ, we first revise the UGEE to create a set of U-statistics-based weighted 

generalized estimating equations (UWGEE): 

( ) ( ),= = = = ,n n
C C C

G S Gθ
∈ ∈ ∈

−∑ ∑ ∑i i i i i i i i
i i i

U U f h 0∆ ∆ 	 (25)
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 Where Gi has the same interpretation as in the complete data case. For example, for K=2, 

, 1 21 2
= Pr = 1| , = , = ,

ki tk
ki t ki t ki t t i t i tki tk k kk ki tk

r
rπ ϕ ϕ ϕ ϕ

π−
 
 
 

iz 		  (26)

( ) ( ),1 ,2 ,= , , , , = ,m diagϕ ϕ ϕ ϕ ϕ
Τ

i i i i i iK ∆

( ) ( ) ( )
1 2

,1 1 ,2 2
=1 =1

= ,
n n

n n i n j
i j

γ γ γ+∑ ∑W W W

( ) ( ) ( ) ( ),1 1 ,1 1 ,2 2 1 ,2= , , = , .n i n i m n j m n jγ γ
Τ ΤΤ Τ Τ Τ

− −W Q 0 W 0 Q

 Like UGEE, UWGEE is a generalization of the weighted generalized estimating equations (WGEE) for inference about distribution-
free regression models [3] Since ki tk

π  are estimated, we need to account for sampling variability when estimating θ, from (25). The 
theorem below not only shows how to accomplish this task, but guarantee the consistent and asymptotic normality properties of the 
UWGEE estimates as well.  

Theorem 2.  Let θ̂  denote the UWGEE estimate from solving the estimating equations in (25). Let 

( ) ( ) ( ),= | , , = , = ,ki n ki ki k kik k k k
E Var B E G DΤΣi i i iv U y r v ∆ 	 (27)

( ) ( )2
,

=1

= , = ,
K

k n ki kk
k

C E G S H Eρ γ
γ γ

Τ Τ
   ∂ ∂

  ∂ ∂   ∑i i i W∆

( ) ( ) ( )1
,= ,k n ki ki ki ki kik k k k k

CH Var H C E H C E H C
Τ

− −Τ Τ Τ −Τ Τ Τ −Τ Τ Φ − −   
W v W v W

2

=1

= , = < , = 1, , .lim
K

k k
n kk

nn n k K
n

ρ
→∞

∞∑ K

Then, under mild regularity conditions and a n -consistent estimates of θ̂ ,

1. θ̂  is consistent.  

2.  If ( ) ( )ˆ = 1pn α α− O , θ̂  is asymptotically normal: 

( ) ( )2 1

=1

ˆ , = .
K

d k k k
k

n N B Bθθ θ ρ − −Τ
 
 − → Σ Σ +Φ
 
 

∑0 			   (28)

The asymptotic variance above is almost identical to its counterpart in (10), except for an added term Φk.  This extra Φk accounts 
for additional variability due to estimation of γ.  

A consistent estimate of Σθ is obtained by substituting consistent estimates in place of the respective quantities in (28). For example, 
the following are consistent estimates of the components in (28): 

( )
1 1

=1 =1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ= , = ,
1 1

K K
k k

C Ck k

n n
B G D C G S

γ

− − Τ
Τ

∈ ∈

        ∂   ∆ ∆     ∂           
∑ ∑∏ ∏i i i i i
i i

( ) ( ), ,
=1 =1

1ˆ ˆˆ= , = | , ,
nK k

n ki k ki n ki kik k k kk kk ik

nH v E
n n

γ
γ

 
∂ 

 ∂ 
 

∑ ∑ iW U y r

� ( ) ( )1
,

=1 =1

1 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ= ,
n nk k

k n ki ki ki ki kik k k k kk ki ik k

CH Var H C v W H C v W H C
n n

Τ
− −Τ Τ Τ −Τ Τ Τ −Τ ΤΦ − −∑ ∑W

=1

1ˆ ˆ ˆ= ,
1

nk

k ki kik kk ik

v v
n

Τ∑
− ∑

where Â  denotes the quantity by substituting β̂ , α̂ , and γ̂  in the respective parameters in A.  

Alternatively, with the flexibility of FRM, we can readily define a new FRM to concurrently model ki tk
y  and ki tk

r . For notational 
brevity, consider only two groups and let 
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( ) ( ) ( ) ( )1 1 2 1 2 1 2 _ 211
, = , , | , = ,t it jt t t it jt tjtit

E f y y h E f r r hθ γ θ γ−
       

i i i i, z z , 	 (29)

( ) ( ) ( ) { }3 1 2 _ _ 3 1 1 2
2 2 1 2

, | , = , , = ,t it jt t t it jt y yit jt it jt
E f r r h f y y Iθ γ

≤

 
 
  

i i iz z ,

( ) ( ) ( )2 1 2 1 3 1 2 2 1, = , , = , = ,t it jt it t it jt jt t tf y y r f y y r h θ γ θi i i ,

( )( ) ( )( )2 1 1 _ 3 2 2 _
1 2

logit = , logit = .t t t t t t
it jt

h hθ γ ξ η θ γ ξ ηΤ Τ+ +i i, z , z

Unlike the preceding approach, θ and γ are both the parameters of the FRM in (29). With the redefined Gi, ∆i, fi and hi below, the 

UWGEE in (25) can again be used to provide simultaneously inference about ( )=ζ θ γ
ΤΤ Τ, :  

( ) ( ) ( ) ( )1
1 2 3 1 2 3 1= , = , , , = , , , = , , ,l l l mG D V f fθ

Τ Τ Τ− Τ Τ Τ Τ Τ Τ
i i i i i i i i i i i i i if f f f h h h h f K 	 (30)

( )1= , , , = 1,2,3,l l l mh h lΤ
i i ih K

( ) ( )1 2
2 3

=2 =2

1 if = 1 1 if = 1

= , = ,
if = 2, , if = 2, ,

t t
it jt

s s
s s

t t

h t m h t m
π π

θ θ

 
  
 
 
  
∏ ∏i iK K

( )
1 1

1 2
11 3

0 00 0
= , = 0 0 , = 0 0 ,

0 0 0 0

m

m

m

diag
D V V

V

ϕ

θ
− −

−
−−

  
 ∂  
  ∂        

i

i i i i i

i

I

h I
I

∆

( )

( )

22 22
2

2 2
1

2 21 1

1 0 0
= , = ,0

0 1
m m

m m

h h V
V V

h h
−

 
−         

  − 
 

i i
i

i i
i

i ii i

I

L %
% L O L

L

( )

( )

32 32
3

3 3
2

3 32 2

1 0 0
= , = ,0

0 1
m m

m m

h h V
V V

h h
−

 
−         

  − 
 

i i
i

i i
i

i ii i

I

L %
% L O L

L

where { }= max ; = 1, = 1, , 1k kitm t r t m +i K  and φi is defined in (26).  

We can again apply Theorem 2 to characterize the asymptotic behavior of the estimate ζ̂ , except that we no longer need to adjust 
for the variability of estimated γ̂ , since the latter is estimated together with θ. Under mild regularity conditions, ζ̂  is asymptotically 
normal: 

( ) 1 2

=1

ˆ , = ,
K

d k k
k

n N B Bζζ ζ ρ− −Τ
  
  − → Σ Σ
  

  
∑0

where 2 ,  k kρ Σ   and B are defined in (27). To find Σζ, note that 

( ) ( )= = , = 1,2.k ki ki kik k k
Var E kΤΣ v v v

Thus, 
1 2 2 1

1 1 1 1 , 2 2 2 2 ,
1 2 2 1=1 =1 =1 =1

1 1 1 1ˆˆ ˆ ˆ ˆ ˆ ˆ= , = , = , = .
n n n n

i i i n ij j j j n ij
i j j i

v v v v v v
n n n n

Τ Τ∑ ∑∑ ∑ ∑ ∑U U

Also, we estimate B by: 
1 1

1 2ˆ = .
1 1

C

n n
B G D

− −
Τ

∈

   
   
   

∑ i i i
i

Ä
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Thus, a consistent estimate of Σθ is given by: 

1
1 2

1 2

ˆ ˆ ˆˆ ˆ= .n nB B
n nζ

− −Τ 
∑ ∑ + ∑ 

 
Alternatively, since 

( ) ( ) ( )1 , 1 1 , 1 1 , ,= | , | , = ,n i i n i i n ij n ikE E E EΤ Τ Σ   i iU y r U y r U U
 
a consistent estimate of Σ1 is given by the U-statistic:  

( )

1 1
1 2

1

1 2,1 2

ˆ = ,
1 2 ijk

n n
i C j k C

n n− −

∈ ∈

   
∑    

   
∑ ∑ V

 

where Vijk  is a symmetric version , ,n ij n ik
ΤU U  with respect to permutations of (j,k), i.e., 

=ijk ' 'ij k
V V% %  [3]. A similar estimate is obtained for 2∑̂ .  

APPLICATIONS
We demonstrate our considerations with both simulated and real data. We first investigate the performance of the proposed 

approach by simulation and then present an application to a real study on sexual health for a group of teenage girls in low-income urban 
settings who were at elevated risk for HIV, sexually transmitted infections (STIs), and unintended pregnancies. In all the examples, we 
applied the second approach for inference as discussed in Section 3.2 and set the statistical significance at  = 0.05. All analyses were 
carried out using codes developed by the authors for implementing the models considered using the Matlab software [17].  

Simulation study

We conducted a simulation study to examine the performance of the proposed FRM-based multi-sample Mann-Whitney-Wilcoxon 
Model for longitudinal data analysis. The data were simulated from a longitudinal study with two groups and three assessments under 
both complete and missing data. For space consideration, we only report results for three sample sizes, n1(=n2)=50, 100, and 300, 
representing small, moderate and large sample sizes, respectively. All simulations were performed with a Monte Carlo sample of 1,000.  

We first simulated ( )1 2 3= , ,ki ki ki kiy y y Τy  K = (1, 2) from a trivariate normal, ( )3, (0.5)N C0 , with ( )3 0.5C  denoting a compound 
symmetry correlation matrix (Kowalski and Tu, 2007). We modeled the data using the FRM in (6) with K = 2 and m = 3. For complete 
data, by applying UGEE, we obtain from (16) the following estimate of ( )121 122 123= , ,θ θ θ θ Τ : 

( )
{ } { } { }1 1 2 1 1 2 2 2 1 3 2 31 2

1 2, 1 1

1ˆ = = , , .ij y y y y y yi j i j i jn n
i j C C

I I I
n n

θ
Τ

≤ ≤ ≤

∈ ⊗

 
 
 
 

∑ f

The asymptotic distribution of θ̂  is given by: 

( ) ( )1 2
1ˆ , = ,
2dn N θθ θ  − → Σ Σ +Σ 

 
0

 
( )( ) ( )( ), , , ,= | | .k ki kin i j n i jE E EΤ Σ   

U y U y

Under the null of no between-group difference over time, 0 0 3
1,  =
2

H θ θ= 1   (a 3×1  vector of 1’s), a consistent estimate of Σk is given by: 

( )( ) ( )( ), , , ,
=1

1ˆ ˆ ˆ= | | ,
1

nk

k ki kin i j n i j
k ik

E E
n

Τ∑
− ∑ U y U y

( )( )
( ) ( )

( ) ( )

0, 1 ,2
2 1 2

, ,

0, 1 ,2
1 1 1

1 if = 1

ˆ | = .
1 if = 2

n i j
j n

kin i j

n j i
j n

k
n

E
k

n

θ

θ

≤ ≤

≤ ≤









∑

∑

U

U y
U

Thus, it follows from Theorem 1 that the Wald statistic,

( ) ( )1 2
3

ˆˆ ˆ= ~W n θθ θ θ θ χ
Τ −− ∑ − .  

For the missing data case, we assumed no missing value at baseline t = 1and simulated the missing response ,ki tr  at post-baseline 
under MAR according to (21) with the transition probability ki tk

p  modeled by the logistic regression under a one-step Markov 
condition below: 

( ) ( )1logit = , = 2,3, = 1,2.ki t kt kt ki tk k
p y t kξ η −+

	
	 (31)
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 Under (31), missingness only depends on the most recently observed response ( )1ki tk
y −  prior to time t. Although this assumption 

was used only for convenience purposes, it provides a reasonable model for most real studies.

We set = 3ktη  t = 2,3 and solved the following equations for ktξ  to create about 15% and 25% missing responses ki tk
y  at time t 

= 2,3, respectively, 

2 2 3=1 =1
= 0.85 , = 0.75 .

n nk k
ki k ki ki kk k ki ik k

p n p p n∑ ∑ 		  (32)

 To ensure MMDP, we first simulated the missing data indicator 2kik
r  from the Bernoulli distribution, ( )2kik

Bern p  (k = 1,2).  Then, 

we simulate 3kik
r  by conditioning on 2kik

r , i.e., setting 3 = 0kik
r  if 2 = 0kik

r  and simulating ( )3 3~ki kik k
r Bern p  otherwise.  

Shown in Table 1 are the UGEE and UWGEE estimates of θ, along with standard errors and type I errors for the complete and 
missing data cases based on 1,000 MC replications.  For missing data under MAR, we used (a) the FRM in (15) with inference based on 
the UWGEE in (25) and Theorem 2, and (b) the FRM in (29) for jointly modeling ( )1ki tk

y −  and ,ki tk
r  with inference based on UWGEE 

in (25), but redefined Gi, ∆i, fi and hi in (30).  Since the results were quite similar, only the ones from the latter approach were reported. 
As well, only estimates of θ were shown in the table, as they are of primary interest. The results from the logistic regression in (31) for 
the missing data were quite close to the true values set for the simulation.  

As seen, both the UGEE and UWGEE estimates of θ̂  were quite accurate, even for the small sample size nk=50. The standard 
errors showed a stead decrease as nk increased. Also, the corresponding standard errors were slightly larger for the UWGEE estimates 
because of the loss of information due to missing data. The type I error rates based on the Wald statistic showed a small upward for 
the small sample size nk=50, which is typical of the anti-conservative behavior of this statistic, [18-22,9] but the bias disappeared at 
the larger sample size nk = 100 and 300.  

Real study

Teenage girls in low-income urban settings are at elevated risk for HIV, sexually transmitted infections (STIs), and unintended 
pregnancies. A randomized controlled trial was recently conducted to evaluate the efficacy of a sexual risk-reduction intervention, 
supplemented with post-intervention booster sessions, targeting low-income, urban, sexually active teenage girls [1]. The study 
recruited sexually-active urban adolescent girls aged 15-19 from the Rochester, New York, a mid-size, northeastern U. S. city, and 
randomized them to a theory-based, sexual risk reduction intervention or to a structurally-equivalent health promotion control group. 
Assessments and behavioral data were collected at baseline, and again at 3 and 6 months post-intervention. The primary interest of 
the study is to compare frequency of unprotected vaginal sex between the intervention and controlled condition. More details about 
the demographic characteristics of the study population, the treatment conditions and the assessment battery can be found in [1].  

As mentioned in Section 1, a difficult problem with the data are the extremely large values some subjects reported with respect 
to their sexual activities. For example, seven subjects reported over 100 episodes of unprotected vaginal sex over the past 3 months 
at the 3 month follow-up, with the largest one being 1,000,000. A common approach to this issue in psychosocial research is to trim 
such outliers using some ad-hoc rules such as the one based on trimming large values by setting such outliers at 3 times the standard 
deviation of the outcome [19,1]. However, these methods induce artifacts, because of their dependence on the specific rules used and 
subjective criteria used in each method. Rank-based approaches such as the proposed FRM model address this issue in a much more 
objective fashion.  

Estimates of θ (standard error) and type I errors from simulated data

 Complete data (UGEE)

Sample Size (per group) θ121 θ122 θ123  Type I error

   
 

0 12 3
1: =
2

H θ 1

50  0.497 (0.057)  0.502 (0.058)  0.501 (0.059)  0.054

100  0.499 (0.042)  0.502 (0.045)  0.502 (0.048)  0.051

300  0.499 (0.023)  0.500 (0.024)  0.499 (0.025)  0.054

 Missing data under MAR (UWGEE)

50  0.500 (0.061)  0.504 (0.071)  0.499 (0.069)  0.069

100  0.502 (0.043)  0.501 (0.057)  0.501 (0.049)  0.051

300  0.500 (0.024)  0.499 (0.037)  0.500 (0.029)  0.051

Table  1: UGEE (for complete data) and UWGEE (for missing data) estimates, standard errors and type I errors for testing no effect of time for a 
simulated longitudinal stuty with 2 groups and 3 assessments under complete data and missing data with MAR.
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Our analysis was based on the 639 subjects who completed at least one of the three assessments (n1=310,49% in the control and  
n2=329,51% in the intervention). We were interested in comparing the two treatment groups for the unprotected vaginal sex.  Let 

( ), ki t ki tk k
y r   denote such an outcome (indicator for missing data) at time t for the kth treatment, with t=1, 2 and 3 denoting the 

baseline, 3 and 6 months post-intervention and  k=1 for the control and 2 for the intervention. As in the simulation study, the UWGEE 
estimates of θ and γ were obtained from the FRM in (29) by jointly modeling ki tk

y  and ,ki tk
r . However, since some of ki tk

y  were 

extremely large, we used the rankings ( )1ki ti
R − , rather than the actual values of ( )1ki tk

y − , as the predictor in the logistic regression for 
missing data: 

( )( ) ( ) ( )( ) ( )2 1 1 3 2 21 1 2 1logit = , logit = , = 2,3.t t t t t ti t j th R h R tθ γ ξ η θ γ ξ η− −+ +i i, , 	 (33)

 Also, as ties are inevitable for the intrinsically discrete ki tk
y  within our context, we used ( ) { } { }1 1 2 < =1 2 1 2

1, =
2t it jt y y y yit jt it jt

f y y I I+i  

as the functional response in the FRM to account for their presence.  

Shown in Table 2 are the UWGEE estimates of the intercept (1t) and slope (η1t) from the fitted logistic regression component in 
(29) for modeling missingness at 3 and 6 months post-intervention. The occurrence of missing data did not depend on the observed 
(ranking of the) outcome at the prior visit for either treatment condition, suggesting no evidence for rejecting MCAR. Note that the one-
step Markov condition was again adopted in (33). This assumption appeared to be sufficient, since we also tried to include ( )1 1i tR −  in 
the second logistic model in (33), but ( )1 1i tR −  was not a significant predictor.  

Shown in Table 3 are the estimated θ, standard errors and p-values for testing the null of no between-group difference at each 
assessment time, along with the test statistic and p-value for testing the null of no temporal trend over post-intervention. The estimated 
θ12t showed a steady decrease, implying that the likelihood for those in the intervention condition to engage in unprotected vaginal 
sex over time from baseline to 3 and 6 months post-intervention. The decline was significant at 6 months, but was a trend at 3 months 
(p-value is close to 0.10). The continued decline from 3 to 6 months was confirmed by the near significant p-value for testing the null 
of no temporal trend over post-intervention H0 : θ122 = θ123. The increased gain of the intervention effect at 6 months was likely due to 
two booster sessions the study subjects received at 3 months [1]. The booster sessions, 90 minute long (as opposed to four 120 minute 
regular sessions delivered during the intervention), address behavioral patterns of girls that are expected to occur as they age and can 
promote maintenance of gains observed with health-behavior interventions [24].  

Parameter estimates of logistic regression for occurrence of missing data

from the RCT on sexual health

 Month 3  Month 6

 Intercept  Prior response  Intercept  Prior response

 Control/Treat  Control/Treat  Control/Treat  Control/Treat

 Unprotected vaginal sex

estimate  1.386/20.3 6 0.001/ -0.0006 2.246/2.42 4 0.002/0.00 3 

standard error 0.349/0.37 0 0.001/0.001 0.488/0.57 1 0.002/0.00 3

p-value < 0.001/ < 0.001 0.157/0.57 1 < 0.001/ <0.001 0.436/0.28 0

Table  2: UWGEE estimates of parameters of logistic regression for modeling missingness at 3 and 6 months post-intervention for the randomized 
controlled trial on sexual health.

Estimates, standard errors and p-values from the RCT on sexual health

Baseline         Estimate                  Standard error          p-value 0 12
1: =
2tH θ 

 
 

Baseline  0.508  0.566  0.733

month  0.462  0.600  0.112

month  0.441  0.616  0.017

Test statistic (p-value) for testing no differential treatment effect

between 3 and 6 months: 0 122 123: =H θ θ

.769 (0.055)

Table  3: UWGEE estimates of parameters for comparing the number of unprotected vaginal sex from baseline to 3 to 6 months post-intervention for 
the randomized controlled trial on sexual health.
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DISCUSSION
In this paper, we extended the classic Mann-Whitney-Wilcoxon (MWW) for multi-group comparison within a longitudinal data 

setting. We achieved this generalization by utilizing the functional response models (FRM), which is uniquely positioned to model 
rank-based outcomes as in the MWW rank sum test within our context. Inference is based on the U-statistics weighted generalized 
estimating equations. Which provides consistent and asymptotically normal estimates not only for complete data but also for missing 
data under MAR, the most popular missing mechanism in real studies [3,25,26].  

We examined the performance of the proposed approach through both simulated and real study data. Results from the simulation 
study show that the proposed approach performed really well, with good parameter and type I estimates even for a sample as small as 
50 per group. The proposed approach applies to both continuos and discrete outcomes. As demonstrated by the real study on sexual 
health, it handled ties well as the number of unprotected vaginal sex is an intrinsically discrete outcome.  

In addition to the MWW test, median regression may also be used to address the outlier issue arising from the sexual health 
study [27,28]. However, these methods may not work well, since they either do not address missing data in longitudinal outcomes or 
require a unique median. Given that discrete outcomes typically do not have a unique median and MAR is popular in most real studies, 
applications of such methods in practice are very limited.  

We performed all the simulation and real data analyses using a program we developed in Matlab. Readers interested in applying 
the methods can download this program from “CTSpedia.org”, a popular reference and resource website as well as a repository of 
statistical and utility macros to facilitate and promote multidisciplinary interactions and collaborations involving biostatisticians.  

The proposed approach has also limitations. For example, it cannot control for any covariate, which is particularly important for 
observational studies. Current work is underway to further extend the Mann-Whitney-Wilcoxon to a regression setting.  
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