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Cortex; PET: Positron Emission Tomography

INTRODUCTION
Ketamine is a non-competitive N-methyl-D-aspartate 

(NMDA) glutamate receptor antagonist with a fascinating profile 
of pharmacological effects that has made it a hot research 
target in several different fields of medicine and neuroscience. 
High doses of ketamine have long been used medically as a 
general anesthetic [1], and the recreational use of ketamine as a 
psychedelic drug of abuse has a lengthy history as well [2]. For the 
past twenty years, ketamine has been used as a pharmacological 
model for schizophrenia as sub-anesthetic infusions have been 
shown to produce temporary schizophrenia-like symptoms in 
healthy humans [3,4]. The strength of these models has helped 
lead to new hypotheses of glutamatergic system dysfunction in 
schizophrenia [5]. 

In addition to its utility for modeling schizophrenia, ketamine 
has emerged as a useful treatment for multiple psychiatric 

disorders. Sub-anesthetic doses of ketamine in the same range as 
those used for modeling schizophrenia have shown efficacy for 
treating postoperative pain [6], neuropathic pain [7], treatment 
resistant depression [8,9], and suicidal ideation [10]. Indeed, 
the rapid onset of improvement in suicidal ideation induced by 
ketamine, reported to emerge as quickly as 40 minutes post-
infusion [11], provides a major advantage for treating this 
psychiatric emergency as other effective treatments are slower 
acting [12]. Additionally, recent studies have begun to investigate 
the potential use of ketamine as a treatment for drug addiction 
[13,14].

NEURAL MECHANISMS UNDERLYING THE 
EFFECTS OF KETAMINE

The discovery of these remarkable effects of sub-anesthetic 
ketamine has led to a great deal of research investigating the 
underlying neural mechanisms. High doses of ketamine result in 
general suppression of the central nervous system and produce 
general anesthesia. However, at the lower systemic doses that 
produce psychotomimetic and rapid antidepressant effects, 
ketamine administration actually produces enhancement of 
excitatory glutamatergic transmission [15,16]. There is growing 
evidence that at the microcircuit level these sub-anesthetic 
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Sub-anesthetic ketamine infusion is the primary pharmacological model used to study 
schizophrenia and similar administration protocols of the drug are under investigation as a 
treatment for depression and other psychiatric disorders. However, the mechanisms underlying 
both the psychotomimetic and therapeutic effects of ketamine remain poorly understood. This 
review provides an overview of what is known of the neural mechanisms underlying the effects 
of ketamine and details what functional magnetic resonance imaging studies have revealed at 
the systems-level. Multiple analysis techniques show that ketamine produces robust and consistent 
effects at the whole-brain level. These effects are highly conserved across primate species, 
validating the use of nonhuman primate models for further investigations with ketamine. Regional 
analysis of functional connectivity suggests that the therapeutic potential of ketamine may be 
derived from a strengthening of executive control circuitry, making it an intriguing candidate for 
the treatment of drug abuse. However, there are still many questions about ketamine that can be 
answered using current functional imaging techniques that have yet to be addressed.
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doses of ketamine predominantly block the NMDA receptors 
on inhibitory interneurons [17,18], resulting in a disinhibition 
of excitatory projection neurons that is required for the 
antidepressant effects of ketamine [19]. The reason for ketamine 
to primarily inhibit interneurons remains unknown. It has been 
proposed that the tonic firing pattern displayed by many cortical 
interneurons is likely to persistently remove the magnesium 
block from NMDA receptors, allowing ketamine to block the 
channel. Meanwhile, burst firing pyramidal neurons may spend 
more time with the magnesium block in place, reducing the 
likelihood that ketamine will block the NMDA receptor channels 
on these excitatory neurons [20,21].

At the regional level, sub-anesthetic ketamine induces 
increased levels of both glutamatergic and dopaminergic 
transmission [15,22,23]. There is evidence suggesting that 
disinhibition of pyramidal projection neurons in the prefrontal 
cortex leads to downstream activation of dopaminergic neurons 
[24-26]. Thus, while sub-anesthetic ketamine induces excitation 
in many brain areas, its effects on prefrontal circuitry may be of 
particular importance for the induction of psychotomimetic and 
antidepressant effects [27-29]. The prominent role of prefrontal 
circuitry in the effects of sub-anesthetic ketamine may represent 
a critical limitation for the use of non-primate models [30], in such 
studies. The greater homology of the human prefrontal cortex to 
that of other primates [31], might add significant translational 
value to the use of nonhuman primate models for investigating 
the effects of ketamine. Indeed, even the micro-circuitry within 
the prefrontal cortex appears to be well conserved across primate 
species with NMDA receptors playing an important role in local 
processing that may not be present in rodents [32].

PHARMACOLOGICAL IMAGING METHODS AND 
KETAMINE

In order to further investigate the effects of ketamine 
infusion at the regional and whole-brain level, several different 
neuroimaging techniques have been used. Among these, functional 
magnetic resonance imaging (fMRI) has proven invaluable to the 
study of ketamine. Compared to positron emission tomography 
(PET), fMRI features higher spatial and temporal resolution [33], 
which is advantageous for studying ketamine given its relatively 
short half-life and regionally specific effects in many brain areas. 
This review will discuss the key findings that fMRI studies have 
contributed to the mechanistic understanding of the effects 
ketamine has on the brain and will focus primarily on studies 
featuring human and nonhuman primate subjects. Multiple 
fMRI methods have been used to examine the brain activation 
response to ketamine as well as ketamine-induced changes to 
functional connectivity.

BRAIN ACTIVATION
Blood oxygenation level dependent (BOLD) fMRI has been 

used to characterize the regional pattern of changes in neural 
activity induced by ketamine [34-36]. Importantly, strong 
evidence that BOLD fMRI reflects neural activity induced by 
ketamine is available from quantitative PET imaging [37,38]. 
Taken together, these studies show that cerebral blood flow and 
oxidative metabolism stay coupled during ketamine infusion 
(especially at sub-anesthetic doses), thus ensuring that BOLD 

response to ketamine provides an accurate and quantitative 
representation of underlying neural activity.

FUNCTIONAL CONNECTIVITY
The BOLD fMRI signal exhibits spontaneous fluctuations 

associated with temporal patterns of neural activity. Correlations 
in these spontaneous signal fluctuations between distant 
regions are termed functional connectivity and are thought to 
underlie communication within brain networks [39]. Functional 
connectivity has been used for many different clinical applications 
[40], including the study of ketamine infusion. The two types of 
functional connectivity analysis that have been most commonly 
used to study the effects of ketamine infusion are regional seed-
based analysis and global brain connectivity (GBC).

Regional seed-based functional connectivity analysis utilizes 
a region-of-interest approach to calculate functional connectivity 
between specific regions. This technique compares the average 
time course of the BOLD signal within a specified seed region 
with the BOLD time course of every brain voxel outside of the 
seed region (or within a specified target region) usually by means 
of the cross-correlation coefficient (CC) between respective 
time courses [41]. This is the most common type of functional 
connectivity analysis used for determining regionally specific 
effects.

GBC is a measure of whole-brain functional connectivity [42], 
that calculates the average correlation between the BOLD time 
course in a given voxel and the BOLD time course of every other 
voxel in the brain. Alterations in GBC have been associated with 
schizophrenia [43]and thus ketamine-induced changes to GBC 
have been investigated in relation to the psychotomimetic effects 
of ketamine infusion.

Of note, independent component analysis [44,45] and graph 
network analysis [46,47] have also been used to investigate the 
effects of subanesthetic ketamine. However, with the exception of 
Joules, Doyle [47] (discussed below), these studies were designed 
to examine either the analgesic [44,45] or non-acute [46] effects 
of ketamine and employed considerably different scanning or 
ketamine infusion protocol, and thus are not discussed in detail 
in this review.

THE BRAIN ACTIVATION RESPONSE TO 
KETAMINE

Deakin, Lees [34], were the first group to examine the effects 
of ketamine infusion on BOLD activation. They found an extensive 
cortical BOLD signal response with peak signal changes occurring 
3-5 minutes after the start of infusion in all regions. This timing 
corresponds very well with the peak ketamine concentration 
in the blood, and with the onset of behavioral effects. BOLD 
activation was quite extensive, with multiple frontal, parietal, 
temporal, and limbic regions showing increased signal. There 
were also prominent areas of deactivation in the subgenual 
cingulate and medial orbitofrontal cortex. These regions play an 
important role in cortico-limbic networks [48], responsible for 
affective processing and may be important for the antidepressant 
effects of ketamine [49]. Deakin et al. [34], further found several 
regions in which changes in BOLD were correlated with ratings 
of dissociative state or psychotic symptoms, thus establishing the 
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relevance of BOLD activation to the psychotomimetic effects of 
ketamine.

The test-retest reliability of ketamine-induced BOLD 
activation was later established by De Simoni et al., [35]. They 
found the BOLD response to ketamine to be a very robust effect, 
featuring a consistent magnitude and timecourse across different 
sessions, and both within and across subjects. Further, De Simoni 
et al. [35], investigated the dose dependence of ketamine-induced 
BOLD activation and found that a higher dose (75 ng/mL vs. 50 
ng/mL) of ketamine corresponded to greater changes in BOLD 
signal and greater effect sizes. The full ketamine dose-response 
function has yet to be established with BOLD activation however, 
and future work should be focused in this area (as discussed in 
detail below).

Doyle, De Simoni [50], were the first to test the interaction 
of an antipsychotic drug with the ketamine-induced BOLD 
response. They tested the effect of pretreatment with risperidone 
on ketamine-induced brain activation. Clinically, risperidone 
is one of the most commonly prescribed antipsychotics, 
featuring similar efficacy and tolerability to other second-
generation (“atypical”) antipsychotics used for the treatment 
of schizophrenia [51]. Risperidone is an antagonist at both 
dopamine D2 and serotonin 5-HT2A receptors, but with no 
affinity for any glutamate receptor [52]. Doyle and De Simoni 
[50], showed that risperidone attenuated the BOLD response 
to ketamine globally, blunting signal changes in frontal, insular, 
striatal, and thalamic regions. However, ketamine still induced 
significant BOLD activation compared to saline in each of these 
areas following risperidone pretreatment. The magnitude of 
the activation was simply reduced. The antagonism of 5-HT2A 
receptors may play an important role in attenuating the effects 
of ketamine because the dopamine D2 antagonist haloperidol has 
been shown to be insufficient to prevent the psychotomimetic 
effects of ketamine [53]. Neurons expressing 5-HT2A in the 
prefrontal cortex project to the ventral tegmental area and local 
antagonism of these receptors blocks dopamine overflow in the 
prefrontal cortex [54].

Ketamine-induced BOLD activation also appears to be well 
conserved across species. Chin, Upadhyay [55], found extensive 
activation in the cortex and hippocampus of awake rats, and 
indeed, ketamine-induced BOLD activation has been shown in 
anesthetized rats as well [56]. However, a follow-up paper from 
the same group provides strong evidence that the isoflourane 
anesthesia used may confound the effects of sub-anesthetic 
ketamine [57]. Nonhuman primates provide a more translational 
model for studying the BOLD response to ketamine [30,32], 
and methods have been developed that enable rhesus monkeys 
to undergo MRI scanning without the use of anesthesia and 
with minimal restraint stress [58]. A recent study has shown 
that awake rhesus monkeys display ketamine-induced BOLD 
activation [36] that corresponds closely in both magnitude 
and extent to what appears in the human literature [34,35,50]. 
Pretreatment with risperidone attenuated the ketamine-induced 
changes in BOLD in rhesus monkeys [36], again to a similar extent 
as in humans [50]. This data suggests that the neurochemical 
effects of ketamine are well conserved across species and attests 
to the validity of using ketamine in nonhuman primates as an 

animal model for schizophrenia, and as a potential model for 
evaluating novel antipsychotics.

KETAMINE-INDUCED CHANGES TO GLOBAL 
BRAIN CONNECTIVITY

The first paper to use functional connectivity analysis to 
study ketamine infusion was published by Driesen, McCarthy 
[59]. They examined the effects of ketamine on global brain 
connectivity (GBC). Ketamine infusion was found to increase the 
GBC of voxels throughout the brain, illustrating a global increase 
in functional connectivity. This finding is consistent with coherent 
neural activity across the brain seen during psychosis [60,61]. 
Additionally, Driesen, McCarthy [59], found that increased GBC 
correlated with increases to positive schizophrenia symptom 
scores in a number of regions, implying that increased functional 
connectivity is associated with the psychotomimetic effects of 
ketamine.

Anticevic, Corlett [62], measured the effects of ketamine using 
a variant of GBC in which only voxels within the prefrontal cortex 
were considered. The restricted GBC was shown to increase 
after ketamine administration and this prefrontal specific GBC 
was also found to be significantly elevated in patients who were 
within one-year of the onset of schizophrenia symptoms. This 
finding may suggest that elevated functional connectivity in the 
prefrontal cortex could be a biomarker for schizophrenia and 
might indicate that the psychotomimetic effects of ketamine can 
be measured using functional connectivity. However, other than 
benefitting from decreased processing time, it is unclear why 
GBC should be restricted to prefrontal regions, because even if 
prefrontal regions are of primary interest these areas receive 
inputs from many other brain areas outside the prefrontal cortex 
and is part of highly integrative brain circuits [27,29]. Thus, it 
is likely more appropriate to consider changes to connectivity 
with a greater scope even when considering specific regions. 
Furthermore, Anticevic, Corlett [62], performed a global signal 
regression to remove the average brain signal from every voxel in 
the brain. Given that ketamine increases global signal as reported 
previously, the effects of this regression will be different for 
ketamine than for baseline or saline conditions and could 
confound any between-condition comparisons [63].

Recent work from our lab in awake rhesus monkeys has 
demonstrated that ketamine-induced changes in functional 
connectivity are also well conserved across primate species 
[64]. GBC analysis (Figure 1), shows that ketamine causes global 
hyperconnectivity in rhesus monkeys that is similar in both 
magnitude and regional pattern to what Driesen, McCarthy [59], 
observed in human subjects. Thus, there are data from multiple 
imaging modalities that nonhuman primates provide a highly 
translational model for the effects of ketamine.

Finally, Joules, Doyle [47], investigated the effects of ketamine 
infusion on whole-brain functional connectivity using a graph 
theory analysis. The measures of whole-brain connectedness they 
consider are similar to GBC, except instead of being calculated 
on every voxel they are calculated between anatomical regions 
within a whole-brain parcellation map. Joules, Doyle [47], found 
a shift in whole-brain functional connectivity with ketamine 
infusion that is consistent with the reported increase in GBC 
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[59]. They further showed that a pattern recognition algorithm 
could be used to consistently classify the pattern of functional 
connectivity induced by ketamine infusion as different as placebo 
infusion. This finding demonstrates the robustness of the effects 
of ketamine infusion on whole-brain functional connectivity.

KETAMINE-INDUCED CHANGES TO REGIONAL 
SEED-BASED FUNCTIONAL CONNECTIVITY

In addition to their GBC study, Driesen, McCarthy [65], 
performed an investigation of the effects of ketamine on 
functional connectivity to a seed in the dorsolateral prefrontal 
cortex (dlPFC). The dlPFC is a region strongly implicated in 
schizophrenia because of its important role in working memory 
[17], and the group hypothesized that ketamine-induced changes 
in connectivity to the dlPFC would be associated with impaired 
performance on a working memory task. Unfortunately, for 
this study they used a global signal regression, which may have 
confounded their results for the reasons mentioned previously. 
Speculatively, while they found that ketamine reduced 
connectivity to the dlPFC seed, this could result from a greater 
impact of global signal regression under the ketamine condition 
than the saline condition.

Functional connectivity to the striatum was shown to be 
enhanced by Dandash, Harrison [66], who used a regional 
seed-based analysis with seeds placed in the dorsal and ventral 

putamen, dorsal caudate, and nucleus accumbens. While they did 
not find differences in connectivity to either of the seeds in the 
putamen, they found increased connectivity from the thalamus to 
the dorsal caudate and from the ventromedial prefrontal cortex 
to the nucleus accumbens. These results may have been limited 
by the high variability the group observed in ketamine plasma 
levels (68.6 ± 43.6 ng/ml) producing inconsistent drug effects. 
Still, their finding of increased connectivity between the medial 
prefrontal cortex and ventral striatum may inform the study of 
ketamine as a potential treatment for drug addiction (discussed 
in detail below); a condition in which fronto-striatal connectivity 
has been found to be impaired [67,68].

Our lab has recently performed a regional seed-based analysis 
of changes in functional connectivity induced by ketamine in 
awake rhesus monkeys [64]. Like Dandash, Harrison [66], we 
observed that ketamine increased connectivity to a seed in the 
nucleus accumbens, although the increases we observed were 
considerably more extensive. In addition to the accumbens seed, 
our analysis also featured seeds in the amygdala, posterior and 
sub-genual cingulate, orbitofrontal cortex, and dlPFC. Among 
these seed regions, the greatest ketamine-induced changes in 
functional connectivity were seen in dlPFC projections. This may 
be a key finding for explaining both the psychotomimetic and 
antidepressant effects of ketamine. 

Figure 1 Sub-anesthetic ketamine increases global brain connectivity (GBC) in the awake rhesus brain (N=4). GBC for each voxel is expressed as the 
effective average cross-correlation (constructed by averaging z-transformed cross-correlations with all other voxel timecourses and expressing the 
result in the form of effective cross-correlation): A) Distribution of GBC in all gray matter voxels during baseline; B) Distribution of GBC in all gray 
matter voxels during ketamine infusion. The noticeable rightward shift in B compared to A indicates increased connectivity between brain regions 
during ketamine infusion; C) Voxel-wise GBC maps during baseline; D) Voxel-wise GBC maps during ketamine infusion. Ketamine-induced increases 
in GBC are noticeable throughout the brain. For comparison to human data see Driesen, McCarthy [59].
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The dlPFC is a region strongly implicated in schizophrenia 
because of its important role in working memory [17]. The 
hyperconnectivity induced by ketamine could be related 
to aberrant processing leading to psychotic symptoms, as 
hypothesized by Driesen, McCarthy [65]. Further, the dlPFC 
plays an essential role in the executive control of emotion [69], 
which has been shown to be dysfunctional in major depression 
[70]. Direct activation of the dlPFC using repeated transcranial 
magnetic stimulation is an effective treatment for depression 
[71], presumably because of a resultant strengthening of network 
connections responsible for executive control of emotion [72,73]. 
Thus, the ketamine-induced increases in dlPFC connectivity may 
be a key indicator of psychotomimetic effects present during 
ketamine infusion as well as the neuroplastic changes thought 
to underlie the antidepressant effects that follow ketamine 
administration.

Another study [74], investigated ketamine-induced changes 
in functional connectivity specifically between the dlPFC and 
hippocampus. They found that acute ketamine administration 
increased dlPFC-hippocampus connectivity in both human 
subjects and in rats. The breadth of their results is limited because 
only a single connection was examined. However, this data does 
support the finding in rhesus monkeys [64], of robust ketamine-
induced increases in dlPFC functional connectivity.

FUTURE DIRECTIONS FOR IMPROVING THE 
UNDERSTANDING OF KETAMINE

While ketamine-induced BOLD activation has been a useful 
first step for studying the whole-brain effects of ketamine, 
functional connectivity may prove to be more informative for 
understanding the mechanism of action of ketamine in the 
brain. It is important to note that when neural activity increases, 
metabolic activity (and therefore BOLD signal) is most enhanced 
at the synapses and not at the cell bodies [33]. Thus, in the case 
of localized disinhibition of pyramidal neurons, as presumed 
with ketamine, the downstream areas receiving projections from 
the disinhibited region(s) may show the greatest enhancement 
of BOLD signal. On the other hand, a region that becomes 
disinhibited may increase its functional coupling to downstream 
areas and hence may show increased functional connectivity 
even when it does not show as strong of an enhancement in 
BOLD signal [75]. This may explain why the dlPFC shows the 
most extensive increases in functional connectivity [64], but only 
moderately increased BOLD signal during ketamine infusion [35, 
36].

Future studies could use fMRI to answer several other 
questions about ketamine. The dose-response relationship for 
ketamine remains poorly understood. This is true both for the 
efficacy of ketamine as an antidepressant and for the acute effects 
of ketamine on brain activity. De Simoni, Schwarz [35], reported 
that BOLD activation increased with increasing dose, however 
no peak dose has been established and no investigation of the 
dose dependence of changes to functional connectivity has been 
conducted. Further, investigation into the persistent effects of 
ketamine on brain activity is also warranted. Most fMRI studies 
to date have focused on examining the acute effects of ketamine, 
however the antidepressant effects do not typically begin until at 

least an hour post-infusion [8,28]. One study [46], investigating 
the sustained effects of ketamine, has reported significant changes 
to functional connectivity 24-hours post-infusion, however these 
results may be confounded by the effects of anesthesia [76], and 
should be replicated in awake subjects. 

Another important question regarding the effects of ketamine 
is whether they are truly global or if a specific region (such as 
dlPFC) or subset of regions become disinhibited and drive the 
excitatory effects elsewhere in the brain. The use of a dynamic 
functional connectivity analysis [77,78] could potentially be 
used to determine whether there is a specific regional onset 
to the effects of ketamine. Currently, there are no published 
studies employing this type of analysis with any NMDA receptor 
antagonist.

The independent contributions of the individual 
pharmacological components of ketamine remain largely 
unknown. Ketamine is a chiral compound consisting of a pair of 
(R,S) enantiomers and there is some evidence suggesting that 
R-ketamine may have greater antidepressant efficacy [79] while 
also producing fewer psychotomimetic effects [80]. Further, 
there is one report that found a specific metabolite of ketamine to 
be sufficient for producing antidepressant effects [81]. Imaging 
these independent components of ketamine separately may lead 
to important new insights into how the effects of ketamine are 
mediated. Such experiments may also help to determine whether 
the psychotomimetic effects of ketamine can truly be segregated 
from the antidepressant effects.

FUTURE DIRECTIONS FOR INVESTIGATING THE 
THERAPEUTIC USE OF KETAMINE

Ketamine has already shown tremendous therapeutic value 
in the treatment of major depression, and the results from 
functional imaging experiments provide tantalizing evidence of 
further therapeutic uses for ketamine. The finding that ketamine 
enhances connectivity to the dlPFC [64], and potentially causes 
neuroplastic changes that strengthen executive control, has 
major implications for the potential use of ketamine in treating 
other psychiatric disorders. Impaired executive control has 
been associated with a number of disorders and is a particularly 
common finding in drug addiction [82-84]. Indeed, acute 
administration of cocaine has been shown to significantly reduce 
functional connectivity between dlPFC and nucleus accumbens in 
awake nonhuman primates, and the connectivity between these 
regions is negatively correlated with cocaine intake during self-
administration [68]. There is already some evidence to indicate 
that sub-anesthetic ketamine infusion may be an effective 
treatment for cocaine abuse [13,14], and as there are currently no 
FDA approved medications for the treatment of psychostimulant 
abuse, further investigation is certainly warranted. Nonhuman 
primate self-administration represents the gold-standard for 
modeling addiction, andfMRI studies provide strong evidence 
that ketamine induces highly translational effects on BOLD signal 
and functional connectivity in nonhuman primates. An elegantly 
designed study could investigate the efficacy of ketamine for 
reducing drug self-administration, as well as the predictive 
value of dlPFC functional connectivity as a biomarker for drug 
addiction.
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CONCLUSIONS
Acute administration of sub-anesthetic ketamine produces 

a robust, global increase in BOLD signal that is correlated with 
the psychotomimetic effects of ketamine. Functional connectivity 
also undergoes robust, global increases during acute ketamine 
administration that correlate with the psychotomimetic effects 
of ketamine. These effects are very well conserved across 
primate species and could be used to create a translational 
pharmacological model of schizophrenia in nonhuman primates. 
Ketamine shows exciting potential as a therapeutic and the results 
from fMRI experiments suggest it may bolster executive control 
circuits, making it a particularly good candidate for investigation 
in the treatment of drug abuse. Future fMRI studies should be able 
to elucidate many of the questions that still remain unanswered 
about the mechanisms mediating the effects of ketamine.
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