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Abstract

The infant immune response to respiratory syncytial virus (RSV) remains 
incompletely understood. A neonatal mouse model of RSV infection mimics severe 
infection in human infants and have shed light on key immunological distinctions that 
explain disease severity and impaired immune responses in the youngest. Early 
activation of innate immunity, type 1 interferon dominated pathways (e.g. IFN alpha), 
followed by pathways involved in B cell proliferation and maturation that lead to 
antibody production have gained interest in recent years. Here, we review the role for 
age-specific immune responses and IgA production in mediating protection against RSV 
infection and draw comparisons (when possible) to human infants.

ABBREVIATIONS
RSV: Respiratory Syncytial Virus; DC: Dendritic Cells; pDC: 

plasmacitoyd Dendritic Cells; IgA: Immunoglobulin A; BAFF: B 
Cell Activating Factor; BAFF-R: B Cell Activating Factor-Receptor; 
IFN: Interferon

INTRODUCTION
Respiratory syncytial virus (RSV) is the leading viral 

respiratory pathogen in infants [1]. The global burden of this 
disease is estimated at 64 million cases and 160,000 deaths 
annually [2]. Yearly in the USA, it is responsible for 85,000 to 
144,000 infant hospitalizations [2]. The highest risk of RSV-
related hospitalization occurs in infants less than 3 months 
of life, while the majority of RSV-related hospitalizations will 
occur in the first year of life [3,4]. Healthcare costs are estimated 
at US$365–585 million per year, and the economic impact, in 
relation to days lost from work, is greater than that of influenza 
[5]. Mortality rates from RSV in infants are 9 times higher than 
influenza in this age group [6].

Risk factors associated with severe RSV disease include 
preterm birth, immunodeficiency, and chronic lung or heart 
disease [7]. However, the most powerful risk factor for severe 

RSV is young chronological age [8]. Most severe RSV disease is in 
infants (<1 year of age) [6,9]. Increased disease severity in young 
infants could be due to: 1) structural immaturity of the lung and/
or smaller airway size of infants [10] and/or 2) immaturity of the 
immune system in infants [11,12].

There are numerous differences in the immune responses of 
infants and adults [13,14], including reduced numbers of innate 
and adaptive immune cells capable of responding to pathogens.

Evidence suggests that early inflammatory and immune 
events characteristic of the “innate” host response at the mucosal 
level are crucial in determining the outcome of acute RSV infection, 
as well as, its long-term consequences (asthma and recurrent 
wheezing) [15,16]. Approximately 60 RSV vaccine candidates 
are currently in development [17]. Adult host response to 
vaccination often appears to center on early activation of innate, 
type 1 interferon dominated pathways (e.g. IFN-a), followed by 
pathways involved in B cell proliferation and maturation that 
leads to the production of protective antibodies [18]. For both 
of these pathways, substantial age-dependent differences appear 
to exist and very little is known about the mucosal immune 
response capabilities at young ages [18]. Understanding these 
key immunological pathways in the context of RSV natural 
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infection in an age relevant manner can immediately translate in 
vaccine design and future vaccination strategies by recognizing 
key mediators of the immune response against RSV. Here, we 
discuss the mucosal immune response against RSV infection and 
propose a mechanism that could explain, in part, the role of age in 
impaired mucosal immunity.

Ontogeny of mucosal immune system

The mucosal immune system functions as a first line of 
physical and immunological defense against invading pathogens 
[19]. Components of the mucosal asscociated lymphoid tissue 
(MALT) include the gut associated lymphoid tissue (GALT; e.g. 
Peyer’s patches), bronchus associated lymphoid tissue (BALT) 
and nasal associated lymphoid tissue (NALT). These tissues serve 
to protect mucosal epithelial surfaces from ingested or inhaled 
pathogens/antigens mainly through the secretion of IgA directly 
onto mucosal epithelial surfaces [19].

The structures of the mucosal immune system are fully 
developed in utero by 28 weeks gestation, but in the absence 
of intrauterine infection, activation does not occur until after 
birth [20]. Maternal and perinatal environmental factors 
have a profound influence on expression of local immunity at 
mucosal sites [21]. At birth, the mucosal immune system of a 
healthy neonate is naive, and is rapidly stimulated by bacterial 
colonization of the gut and external surfaces [21]. Thus, the 
predominant activities in MALT, and most likely but less studied 
NALT and BALT, after birth involve proliferative responses to 
environmental challenge rather than primary lymphopoiesis [20]. 
Maturation of the mucosal immune system and establishment of 
protective immunity varies between individuals but is usually 
fully developed in the first year of life, irrespective of gestational 
age at birth [20]. However, mucosal compartments achieve 
adult levels of effector activities more slowly than systemic 
compartments [21].

The first 12 months of life is a critical period in which mucosal 
immunity is required to ensure survival. It is paradoxical that 
mucosal immune maturation is delayed relative to systemic 
immunity. Although the cellular apparatus is in place at birth and 
mucosal antibodies [22] are detected within 1 month in 97% of 
the normal population [23], a functional deficit persists for some 
time. Longitudinal studies in children indicate that the switch from 
producing monomeric IgA to secretory IgA in saliva, an indicator 
of maturation of mucosal secretory immunity, occurs at widely 
varying times in the first 12 months [24]. Understanding the 
different factors that influence the mucosal immune system early 
in life and its response to infections is a critical step in moving 
forward with designing and implementing mucosal vaccines 
for pediatric patients. Animal models have proven valuable in 
understanding RSV pathogenesis; however, the majority of these 
studies have been performed using adult animal models and it is 
unclear how accurately data derived from these models reflect 
human disease [25]. A mouse model of neonatal RSV infection, 
which recapitulates many of the pathologies associated with RSV 
infection in infants, has gained interest. Mice infected as neonates 
(aged ≤ 7 days) develop long-term ‘asthma’ characterized by 
increased airway hypersensitivity, mucus hyperproduction, Th2 
cytokine and cellular responses and airway remodeling [25]. 
Although it is unclear what Th2-biased immunopathologies upon 

RSV reinfection mean, these models strengthen the importance 
of the age of initial infection of RSV, which is considered one of 
the greatest risk factors for severe RSV infection and long-term 
wheezing [26]. It is also important to take such comparisons 
between human and mouse with caution given that infants 
are defined by chronolical age rather than immunology 
characteristics and that the mouse is not fully permissive for 
RSV. However, evidence suggest that overall, the first year of life 
can be considered a critical period where there is constant and 
dynamic interaction between the mucosal immune system and 
the environment that leads to a fully matured immune response.

Role of maternal antibodies

RSV infections and hospitalization in children occur mainly 
during the first year of life in the presence of maternal antibodies. 
It is clear that maternal vaccination during pregnancy is a safe 
and effective strategy to protect infants against numerous 
infections including tetanus, diphtheria, and influenza [27]. 
However, recent data suggest that they may also interfere with 
the development of a systemic and humoral immune response to 
natural infections or even vaccination responses in the offspring 
[28-30]. Though the effect of maternal antibodies on mucosal 
immune responses to RSV has not been fully explored, we do 
know that maternal RSV-neutralizing antibodies are efficiently 
transferred transplacentally to the newborn [31,32]. Beyond this 
fact, the data appear to disagree. For example, there is evidence 
that higher cord blood RSV antibody titers protect against 
serologic infection [33] and other evidence that the presence 
of maternal IgG antibodies to RSV suppresses the infant serum 
IgA antibody response to RSV [28]. Since maternal vaccination 
to protect the infant against RSV is a realistic intervention that is 
currently being developed, it is clear that our understanding of 
the role of maternal antibodies on the infant immune response to 
RSV needs further exploration [34].

Dendritic cell maturation and Type 1 interferon

Dendritic cells (DCs) represent a family of professional 
antigen presenting cells that have the capacity to induce antigen-
specific T- and B-cell responses [35]. Efficient priming of T and 
B cell responses is dependent on full maturation of DCs, which 
is evoked by the recognition of specific pathogen-associated 
molecular patterns by pathogen recognition receptors including 
TLRs [36].

Two broad groups of DC subtypes can be distinguished: 
conventional DCs (cDCs) and plasmacytoid DCs (pDCs) [25,37].
The latter employ TLR7 and TLR9 to recognize single-stranded 
viral RNA, such as RSV [38]. Neonatal cDCs are approximately 
50% as efficient as adult cDCs at producing TNF- in response LPS; 
and pDCs produce insufficient type I interferon (IFN) responses 
compared to adult pDCs [13,39]. The latter is critical, since type I 
IFN has antiviral activity and stimulates the innate and adaptive 
immune system by participating in antibody production at 
multiple stages, including modulation of plasma cell formation 
[40,41] and development of germinal centers during viral 
infection [42].

Two nonstructural proteins of RSV, NS1 and NS2, are known 
to suppress IFN production [43, 44]. On the other hand RSV 
induces high level expression of IFN-β in cultures of various 
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human respiratory epithelial cells and fibroblasts [45,46]. RSV 
also induces high levels of IFN-α in different subsets of dendritic 
cells [47-49]. Interestingly, adult mice produce significantly 
higher amount of IFN- upon RSV infection when compared to 
neonates [50] suggesting that while RSV can suppress type I 
IFNs, there is something different in the IFN response between 
neonates/infants and adults.

IFNα treatment or adoptive transfer of adult pDCs, capable 
of inducing IFNα, prior to neonatal RSV infection decreases 
Th2-biased immunopathogenesis, reduces viral load and down 
regulates IL4Rα on Th2 cells during RSV reinfection, highlighting 
an age dependent key role on mucosal immunity against RSV 
[50]. Remot et al., described two major deficiencies in neonatal 
lung innate responses of mouse infected with RSV: poor DC 
mobilization and weak engagement of the type I IFN pathway 
[51]. Administration of Flt3 ligand (Flt3-L), a growth factor that 
stimulates the proliferation of hematopoietic cells, to neonates 
before RSV-infection, resulted in increased lung DC number, 
and reconditioned the type I IFN pathway in neonates upon 
infection with RSV. Furthermore, these mice were protected 
from exacerbated airway disease upon adult reexposure to RSV 
by reorientation of RSV-specific responses toward Th1-mediated 
immunity [51].

RSV and IgA class switching: T cell dependent IgA 
class switching (CD40/CD40L) and T cell independent 
(BAFF/APRIL)

IgA class-switch recombination (CSR) is induced by both T 
cell-dependent (TD) and independent (TI) pathways. DC-primed 
Th cells upregulate CD40L and differentiate to Th effector cells 
producing cytokines that define their Th subset (Th1, Th2, Th17, 
etc). In the TD pathway, CD40 ligand on Th cells stimulates CD40 
on B cells. B-cell class switching to IgA also requires IL- 10 and 
transformer growth factor beta (TGF–a). In the TI pathway, B 
cells are activated through B cell-activating factor of the TNF 
family (BAFF), a proliferation-inducing ligand (APRIL), and 
cytokines such as IL-10 and cytokines such as IL-10 and TGF-a.

Differences in T cells between neonates and adults may 
contribute to defects in TD pathways of IgA production. T 
cells from infant umbilical cord blood express lower levels of 
CD40L than adult peripheral blood [52]. Reduced CD40/CD40L 
interactions in RSV infection of infants could contribute to poor 
antibody responses. In fact, an RSV vaccine achieved higher IgA 
titers in serum and increased frequency of antibody-producing 
cells when CD40L was added [53]. There is evidence that infants 
can mount TI responses to RSV. Human airway epithelial cells 
(AEC) produce BAFF in response to RSV infection in vitro, 
suggesting a role for TI antibody responses to RSV in the lung [54]. 
Additionally, BAFF localize to infected respiratory epithelium 
of lungs from infants with fatal bronchiolitis [55]. However, 
this may not be enough to induce long lasting mucosal immune 
response, because when compared to adults the BAFF/BAFF-R 
systems is severely impaired. BAFF-R is expressed at reduced 
levels in the very young and reduced expression of BAFF-R is 
associated with decreased B cell survival [56]. B cells from human 
preterm neonates expressed less BAFF-R compared with adult B 
cells and had significantly less proliferation compared with adult 

B cells after stimulation with human recombinant BAFF [57]. 
Furthermore, BAFF or APRIL was unable to induce IgA/IgG/IgM 
secretion from newborn B lymphocytes in vitro [56].

Mucosal IgA antibodies and RSV protection

Human IgA (IgA1 and IgA2) is found predominantly in blood 
and mucosal secretions. At birth, the frequency of IgA1- and IgA2-
bearing B cells is equivalent [13]. Subsequently, a preferential 
expansion of the IgA1-bearing cell population occurs [13]. Serum 
concentrations remain <35 % of those in adults for the first two 
years of life [13]. Despite relative antigenic stability, infections 
with RSV occur throughout life. Substantial effort has focused 
on determining correlates and/or mediators of protection 
against RSV disease. Current vaccine candidates seek to induce 
high levels of RSV-specific serum neutralizing antibodies, which 
are associated with reduced RSV-related hospitalization rates. 
However, these may not actually prevent infection. In fact, both 
mucosal IgA and IgG have been shown to correlate better with 
RSV protection than serum antibodies in both infants and adults 
implying that mucosal and serum antibodies are independent 
co-correlates of protection against RSV infection [58,59] and 
highlighting the importance of mucosal humoral response 
against RSV. In the adult human challenge model, the level of 
virus replication and the magnitude of the subsequent antibody 
response are inversely correlated with the level of nasal secretory 
neutralizing antibody prior to infection [60]. RSV-specific nasal 
IgA correlates significantly more strongly with protection from 
polymerase chain reaction-confirmed infection than serum 
neutralizing antibody [61] and higher nasal immunoglobulin 
(Ig) A predicts lower infectivity and lower measures of viral 
replication [58]. Furthermore, low RSV-specific nasal IgA is an 
independently significant risk factor for RSV infection [62].

Age-related differences in mucosal IgA concentrations have 
not been extensively measured, but it is likely critical as a first line 
of defense against RSV at its point-of-entry in the human nasal 
respiratory epithelial tissues [63-65]. McIntosh et al showed a 
role of age in the capacity to develop antibody in secretions while 
studying the the immunologic response to infection with RSV 
in infants [66]. They noticed a significant difference in the IgA 
antibody response to RSV between infants younger or older than 
two months. Scott et al found that IgA was the only immunoglobulin 
consistently present at a detectable concentration in respiratory 
secretions of infants after RSV primary infection and that the 
neutralizing activity against RSV was shown to be due to specific 
IgA antibody [67]. Murphy et al analyzed the serum and secretory 
immune responses of 18 infants and children, 4 to 21 months of 
age, who underwent primary infection with RSV [68] and found 
that younger infants failed to develop a rise in serum or nasal-
wash neutralizing antibody. This failure to achieve high titers of 
antibodies following primary infection likely plays some role in 
their subsequent susceptibility to reinfection.

DISCUSSION & CONCLUSION
Although there is comprehensive data on the role of age 

and immune responses against RSV, many questions remain 
unanswered: First, what are the mechanisms responsible for 
protection against RSV? Are mucosal antibodies, specifically 
IgA, protective? Are mucosal IgA antibody responses affected 



Central
Bringing Excellence in Open Access





Cormier et al. (2017)
Email:  

JSM Allergy Asthma 2(1): 1006 (2017) 4/6

by the infant’s inability to induce pDCs and/or produce type 
I IFNs? If so, is there role for the BAFF/BAFF-R pathway? Age 
relevant mouse models have provided a significant amount 
of mechanistic data about the longitudinal development of 
immune responses to RSV; however, caution needs to be taken 
when extrapolating data from mouse models to the human due 
to the semi-permissive nature of hRSV in mice, the differences 
in immunological responses between mice and humans, and 
the differences in lung anatomy. Thus, human studies remain 
essential to validate/confirm mouse studies. Based on the 
limitations of the existing data, we propose an overall model 
of how age influences the mucosal immune humoral response 
to RSV infection (Figure 1). In this model, RSV is recognized by 
TLRs in pDC. Primary early viral infection in infants, but not 
adults, results in insufficient production of type I IFN (e.g  a/b) 
which results in less mature DCs and lack of direct stimulation of 
B cells. Evidence from age relevant mouse models confirms that 
DC maturation and type I IFN pathways are impaired in neonates 
and yet are critical for an appropriate local immune response 
against RSV. From the literature, we extrapolate that immature 
DCs fail to secrete sufficient quantities of BAFF (B-cell activating 
factor) a key mediator on B cell activation and class switching 
immunoglobulin expression, responsible for stimulating B cells 
via its receptor BAFF-R (B-cell activating factor-receptor). This, 
leads to decreased production of IgA resulting in a hampered 
humoral mucosal immune response. In addition, differences 
in T cells between neonates and adults with reduced of CD40/
CD40L interactions in RSV infection of infants may contribute to 
defects in TD pathways of IgA production and contribute to poor 
antibody responses. Finally, low levels of nasal IgA correlate with 
higher viral replication and poor protection against RSV. These 

differences may account, in part, for the age dependent immune 
response against RSV and the increased susceptibility of the 
youngest to severe infection.
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