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EDITORIAL
Gout is a leading cause of joint inflammation that has 

been crippling mankind for centuries. Notwithstanding the 
tremendous progress made in the medical sciences in the recent 
past, the conventional treatments are suboptimal for gout to this 
day. So far, we know the inflammation is caused by monosodium 
urate (MSU) crystals aggravating immune cells, specifically 
neutrophils and macrophages. It is predominantly neutrophil-
driven and neutrophil extracellular traps (NETs) play a major 
role in regulating inflammation. Auto-inflammatory disorders 
such as gout are notorious for generating an overt immune 
response [1-7]. Gout is characterized by joint inflammation in the 
synovium accompanied by frequent flares, which progressively 
become more aggressive over time (Figure 1a) [6-8]. Gout has 
been documented since 2000 B.C. but an effective cure has not 
yet been found [1,2]. However, the diagnosis and staging of gout 
is well-established in the medical profession [9]. 

GOUT
In 2007-2008 there were 8.3 million gout cases and each year 

3 million cases are being added [10]. A frequent target for gout 
attack is the first metatarsophalangeal joint [1-3,7,11]. Currently 
available gout medications are only able to treat the symptoms 
of the disease [4,11]. Patients manage their gout with the help of 
therapeutics and by making lifestyle alterations such as regular 
exercise and diet changes [11]. Men above the age of 40 and 
menopausal women are at the greatest risk to be afflicted by gout 
[12-14]. Gout is less common in younger women, since female 
hormones are known to inhibit uric acid accumulation [14]. 

Gout can also occur at other locations within the body, such 
as the knees, metatarsophalanges, and proximal interphalangeal 
joints (PIPs) and distal interphalangeal joints (DIPs) [15-17]. 
Gout manifests itself as mono-arthritis or bilateral asymmetric 
polyarthritis [11,17,18]. Gout has emerged as a risk factor for 
cardiovascular disorder [19,20]. The hyperuricemic condition 
is linked to multiple comorbidities (diabetes, hypertension, and 
congestive heart failure), which are vital for disease establishment 
[21]. When it is left untreated, the disease progresses through the 
following four stages, as is also shown in Figure 1b [22,23].

Stage I. 	  Asymptomatic hyperuricemia 

Stage II. 	 Acute gout 

Stage III. 	 Intercritical gout 

Stage IV. 	 Chronic tophaceous gout

In advanced stages of gout, painful inflammation becomes 
chronic and leads to ‘tophus’ formation [23-26]. A tophus is 
a conglomeration of dead synovial tissue, MSU crystals and 
activated or dead leukocytes (like neutrophils) [23-26]. It 
appears chalky and gritty due to the presence of MSU crystals 
[16,23-26]. Prolonged bone destruction in gout causes osteoblast 
retraction due to the elastase and osteoclasts resorbing cell-free 
areas of the matrix [22]. Tophi are very dynamic structures, 
which constantly undergo remodeling during gouty flares and 
are associated with the resolution of gouty inflammation [23-
26]. This is due to the production of anti-inflammatory cytokines 
such as transforming growth factor β1 (TGF-β1), IL-10 and other 
nuclear receptor factors, like peroxisome proliferator activated 
receptor-γ (PPAR-γ), and the clearance of apoptotic cells by 
monocyte-macrophages [4,7,11,27,28]. Recent studies suggest 
that the tophus can resolve inflammation by releasing proteases 
that can cleave the proinflammatory cytokines [23,25,26,29]. 
However, the jury is still out on whether tophi are beneficial 
or unfavorable towards the mitigation of gouty inflammation 
[23,25,26,29].

Monosodium urate (MSU) crystals 

MSU crystal accumulation in the joints powers the overt 
immune response, driven primarily by innate immune cells such 
as macrophages and neutrophils [7,26]. Primates (including 
humans) are unable to excrete or decompose uric acid (UA) 
from the body due to the evolutionary loss of the enzyme uricase 
[11,23]. The uricase gene is disrupted by two mutations that 
introduce a premature stop codon [11]. In most cases, renal urate 
transporters such as uric acid transporters (URAT 1) and organic 
anion transporters (OAT4) malfunction, and cause accumulation 
of uric acid in the body [11].

Uric acid (UA) reacts with free sodium in the plasma, forming 
MSU, which crystalizes in the synovial space [6,30-32]. UA is a 
product of purine metabolism and it scavenges singlet oxygen 
regulates oxidative stress in humans [11,30]. UA is also an anti-
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oxidant that plays an interchanging role between a pro-oxidant 
and proinflammatory agent [11,30,33]. UA forms MSU and causes 
ROS-dependent NET formation [30,33]. In low concentrations, 
UA acts as an anti-oxidant and inhibits nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase-dependent NET 
formation [30,33]. It has been shown that at a high concentration 
of non-crystalline UA (8 mg/dl) crystals induce NADPH oxidase/
ROS-independent NETosis (Figure 1c) by utilizing the NFκB 
signaling pathway in neutrophils from Chronic Granulomatous 
Disease (CGD) patients [30]. Unlike UA, MSU crystals induce NETs 
in a ROS-dependent manner [30,33]. Analyses of gout synovial 
fluid and tissue samples, including those in our study, have shown 
the presence of NETs with MSU crystals [34-36] (Sil & Rada., JI., 
under revision). During the resolution phase of inflammation, 
the crystals isolated from SF lose IgG coating [6,7,28,37]. These 
isolated MSU crystals are reported to bind to the lipoproteins 
ApoE and ApoB, which suppress MSU crystal-induced neutrophil 
activation [1-3,7,28]. 

Risk factors
Consumption of purine-rich foods, high fructose corn syrup, 

and alcohol (beer) causes the liver to produce more uric acid 
[11]. Human beings as a species lack uricase, and therefore, 
are unable to breakdown uric acid to a more soluble excretory 
product known as allantoin [11,23]. Although the urate acts as 
an anti-oxidant in the human body, the evolutionary advantage 
gained by uricase elimination is still not apparent [11,23].

Individuals that have a defect in uric acid transporters 
such as URAT1 and OAT4 tend to accumulate uric acid [11]. 
Asymptomatic hyperuricemic condition is an indicator for 
gout [11,21,38]. Genome-wide association study (GWAS) scans 
suggest that SLC2A9 and ABCG2 are the major genes responsible 
for the hyperuricemic condition [11,21,38]. SLC2A9 is involved 
in renal and gut excretion of uric acid [11,21,38]. ABCG2 gene 
Q141K polymorphism (A allele or AA genotype) has an increased 
risk of gout and is involved in only renal excretion of uric acid 
[11,21,38].

Mechanism of action

MSU crystals are damage-associated molecular pattern 

molecules (DAMPs), which trigger inflammasome activation in 
macrophages [1,2,7,28,35,39-42]. Activated macrophages pro-
duce IL-1β and IL-18, which are strong neutrophil chemoat-
tractants [1-3,7,34,35,40,41,43,44]. Neutrophils gather at the 
site of inflammation and exaggerate the joint inflammation [1-
3,7,11,17,28,39]. MSU crystals are coated with immunoglobulin, 
which drives the immune response [7,28]. Gouty inflammation 
can self-resolve in 7-10 days in most situations [6,11,23,35]. 

Clinical significance

To ease the pain caused by joint damage in gout, patients 
typically rely on pain relieving drugs, as well as on urate 
lowering therapeutics [4]. The most commonly prescribed gout 
drugs are colchicine and xanthine oxidase inhibitors (such as 
febuxostat, allopurinol) [4,17]. Colchicine blocks microtubules, 
inflammasome assembly, and inducible nitric oxide (iNOS) 
production in neutrophils and macrophages [1-3,28,45,46]. More 
recently, angiotensin receptor blocker drugs have been shown 
to increase uric acid excretion [47]. These drugs only provide 
temporary symptomatic relief, and are accompanied with 
multiple side effects [6,7,47].

Gout has been called the ‘disease of the kings’ [48,49]. 
Gout is often confused with other joint related arthritis such 
as pseudogout and rheumatoid arthritis (RA) [19]. Therefore, 
there exists a significant risk of misdiagnosis by clinicians. NETs 
have been implicated in both RA and pseudogout [15,50,51]. 
A hyperuricemic condition is a prerequisite for the genesis of 
gout and therefore, it is used as an indicator for gout diagnoses 
[11,52]. However, not everyone with hyperuricemia is afflicted 
by gout [9,11]. Factors such as genetic pre-disposition to 
hyperuricemia, obesity, diuretic medication, and kidney stones 
usually cause a build-up of uric acid in the body [11,19,53]. 
The auto-inflammation experienced in gout is mainly driven 
by neutrophils [1-3,7,28]. Blocking the influx of neutrophils 
may help in coping with recurrent attacks [11,20]. Dietary and 
lifestyle interventions are often incorporated into gout patients’ 
regimens as preventive measures [9,11,19,20]. However, there 
is a gap in the understanding of the mechanism(s) of neutrophil 

Figure 1a The vicious cycle of Gout progression.

Figure 1b Different stages of gout and the associated symptoms.
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activation as well as macrophage and neutrophil interactions, 
which contribute towards exaggeration of the inflammation 
[54,55]. Our study will investigate the factors contributing 
to neutrophil activation and will strive to shed light on the 
underlying mechanism(s). The ultimate goal is to effectively 
block this interaction and thereby, intercept the progression of 
gout.
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