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EDITORIAL

Gout is a leading cause of joint inflammation that has
been crippling mankind for centuries. Notwithstanding the
tremendous progress made in the medical sciences in the recent
past, the conventional treatments are suboptimal for gout to this
day. So far, we know the inflammation is caused by monosodium
urate (MSU) crystals aggravating immune cells, specifically
neutrophils and macrophages. It is predominantly neutrophil-
driven and neutrophil extracellular traps (NETs) play a major
role in regulating inflammation. Auto-inflammatory disorders
such as gout are notorious for generating an overt immune
response [1-7]. Gout is characterized by joint inflammation in the
synovium accompanied by frequent flares, which progressively
become more aggressive over time (Figure 1a) [6-8]. Gout has
been documented since 2000 B.C. but an effective cure has not
yet been found [1,2]. However, the diagnosis and staging of gout
is well-established in the medical profession [9].

GOUT

In 2007-2008 there were 8.3 million gout cases and each year
3 million cases are being added [10]. A frequent target for gout
attack is the first metatarsophalangeal joint [1-3,7,11]. Currently
available gout medications are only able to treat the symptoms
of the disease [4,11]. Patients manage their gout with the help of
therapeutics and by making lifestyle alterations such as regular
exercise and diet changes [11]. Men above the age of 40 and
menopausal women are at the greatest risk to be afflicted by gout
[12-14]. Gout is less common in younger women, since female
hormones are known to inhibit uric acid accumulation [14].

Gout can also occur at other locations within the body, such
as the knees, metatarsophalanges, and proximal interphalangeal
joints (PIPs) and distal interphalangeal joints (DIPs) [15-17].
Gout manifests itself as mono-arthritis or bilateral asymmetric
polyarthritis [11,17,18]. Gout has emerged as a risk factor for
cardiovascular disorder [19,20]. The hyperuricemic condition
is linked to multiple comorbidities (diabetes, hypertension, and
congestive heart failure), which are vital for disease establishment
[21]. When it is left untreated, the disease progresses through the
following four stages, as is also shown in Figure 1b [22,23].

Stage I. Asymptomatic hyperuricemia
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Stage II. Acute gout
Stage III. Intercritical gout
Stage IV. Chronic tophaceous gout

In advanced stages of gout, painful inflammation becomes
chronic and leads to ‘tophus’ formation [23-26]. A tophus is
a conglomeration of dead synovial tissue, MSU crystals and
activated or dead leukocytes (like neutrophils) [23-26]. It
appears chalky and gritty due to the presence of MSU crystals
[16,23-26]. Prolonged bone destruction in gout causes osteoblast
retraction due to the elastase and osteoclasts resorbing cell-free
areas of the matrix [22]. Tophi are very dynamic structures,
which constantly undergo remodeling during gouty flares and
are associated with the resolution of gouty inflammation [23-
26]. This is due to the production of anti-inflammatory cytokines
such as transforming growth factor B, (TGF-B,), IL-10 and other
nuclear receptor factors, like peroxisome proliferator activated
receptor-y (PPAR-y), and the clearance of apoptotic cells by
monocyte-macrophages [4,7,11,27,28]. Recent studies suggest
that the tophus can resolve inflammation by releasing proteases
that can cleave the proinflammatory cytokines [23,25,26,29].
However, the jury is still out on whether tophi are beneficial
or unfavorable towards the mitigation of gouty inflammation
[23,25,26,29].

Monosodium urate (MSU) crystals

MSU crystal accumulation in the joints powers the overt
immune response, driven primarily by innate immune cells such
as macrophages and neutrophils [7,26]. Primates (including
humans) are unable to excrete or decompose uric acid (UA)
from the body due to the evolutionary loss of the enzyme uricase
[11,23]. The uricase gene is disrupted by two mutations that
introduce a premature stop codon [11]. In most cases, renal urate
transporters such as uric acid transporters (URAT 1) and organic
anion transporters (OAT4) malfunction, and cause accumulation
of uric acid in the body [11].

Uric acid (UA) reacts with free sodium in the plasma, forming
MSU, which crystalizes in the synovial space [6,30-32]. UA is a
product of purine metabolism and it scavenges singlet oxygen
regulates oxidative stress in humans [11,30]. UA is also an anti-
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oxidant that plays an interchanging role between a pro-oxidant
and proinflammatory agent [11,30,33]. UA forms MSU and causes
ROS-dependent NET formation [30,33]. In low concentrations,
UA acts as an anti-oxidant and inhibits nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase-dependent NET
formation [30,33]. It has been shown that at a high concentration
of non-crystalline UA (8 mg/dl) crystals induce NADPH oxidase/
ROS-independent NETosis (Figure 1c) by utilizing the NFxB
signaling pathway in neutrophils from Chronic Granulomatous
Disease (CGD) patients [30]. Unlike UA, MSU crystals induce NETs
in a ROS-dependent manner [30,33]. Analyses of gout synovial
fluid and tissue samples, including those in our study, have shown
the presence of NETs with MSU crystals [34-36] (Sil & Rada,, JI.,
under revision). During the resolution phase of inflammation,
the crystals isolated from SF lose IgG coating [6,7,28,37]. These
isolated MSU crystals are reported to bind to the lipoproteins
ApoE and ApoB, which suppress MSU crystal-induced neutrophil
activation [1-3,7,28].

Risk factors

Consumption of purine-rich foods, high fructose corn syrup,
and alcohol (beer) causes the liver to produce more uric acid
[11]. Human beings as a species lack uricase, and therefore,
are unable to breakdown uric acid to a more soluble excretory
product known as allantoin [11,23]. Although the urate acts as
an anti-oxidant in the human body, the evolutionary advantage
gained by uricase elimination is still not apparent [11,23].

Individuals that have a defect in uric acid transporters
such as URAT1 and OAT4 tend to accumulate uric acid [11].
Asymptomatic hyperuricemic condition is an indicator for
gout [11,21,38]. Genome-wide association study (GWAS) scans
suggest that SLC2A9 and ABCG2 are the major genes responsible
for the hyperuricemic condition [11,21,38]. SLC2A9 is involved
in renal and gut excretion of uric acid [11,21,38]. ABCG2 gene
Q141K polymorphism (A allele or AA genotype) has an increased
risk of gout and is involved in only renal excretion of uric acid
[11,21,38].

Mechanism of action

MSU crystals are damage-associated molecular pattern

molecules (DAMPs), which trigger inflammasome activation in
macrophages [1,2,7,28,35,39-42]. Activated macrophages pro-
duce IL-1f and IL-18, which are strong neutrophil chemoat-
tractants [1-3,7,34,35,40,41,43,44]. Neutrophils gather at the
site of inflammation and exaggerate the joint inflammation [1-
3,7,11,17,28,39]. MSU crystals are coated with immunoglobulin,
which drives the immune response [7,28]. Gouty inflammation
can self-resolve in 7-10 days in most situations [6,11,23,35].

Clinical significance

To ease the pain caused by joint damage in gout, patients
typically rely on pain relieving drugs, as well as on urate
lowering therapeutics [4]. The most commonly prescribed gout
drugs are colchicine and xanthine oxidase inhibitors (such as
febuxostat, allopurinol) [4,17]. Colchicine blocks microtubules,
inflammasome assembly, and inducible nitric oxide (iNOS)
production in neutrophils and macrophages [1-3,28,45,46]. More
recently, angiotensin receptor blocker drugs have been shown
to increase uric acid excretion [47]. These drugs only provide
temporary symptomatic relief, and are accompanied with
multiple side effects [6,7,47].

Gout has been called the ‘disease of the kings’ [48,49].
Gout is often confused with other joint related arthritis such
as pseudogout and rheumatoid arthritis (RA) [19]. Therefore,
there exists a significant risk of misdiagnosis by clinicians. NETs
have been implicated in both RA and pseudogout [15,50,51].
A hyperuricemic condition is a prerequisite for the genesis of
gout and therefore, it is used as an indicator for gout diagnoses
[11,52]. However, not everyone with hyperuricemia is afflicted
by gout [9,11]. Factors such as genetic pre-disposition to
hyperuricemia, obesity, diuretic medication, and kidney stones
usually cause a build-up of uric acid in the body [11,19,53].
The auto-inflammation experienced in gout is mainly driven
by neutrophils [1-3,7,28]. Blocking the influx of neutrophils
may help in coping with recurrent attacks [11,20]. Dietary and
lifestyle interventions are often incorporated into gout patients’
regimens as preventive measures [9,11,19,20]. However, there
is a gap in the understanding of the mechanism(s) of neutrophil
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Figure 1a The vicious cycle of Gout progression.
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Figure 1b Different stages of gout and the associated symptoms.
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Figure 1c Pathways involved in NETosis.

activation as well as macrophage and neutrophil interactions,
which contribute towards exaggeration of the inflammation
[54,55]. Our study will investigate the factors contributing
to neutrophil activation and will strive to shed light on the
underlying mechanism(s). The ultimate goal is to effectively
block this interaction and thereby, intercept the progression of
gout.
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