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INTRODUCTION
Under physiologic conditions, the normal turnover of 

red blood cells releases hemoglobin, which is further broken 
down into heme and amino acids (from the globin part). Heme 
oxygenase (HO) is the rate limiting enzyme in the conversion 
of heme into unconjugated bilirubin, and it exists in the brain 
as two isoforms: HO-1 and HO-2 [1]. The production of HO-1 
is inducible by heme and oxidative stress, both of which are 
present following pathologic events such as hemorrhagic 
stroke [2]. HO-2 is constitutively produced under physiologic 
conditions, where it facilitates the majority of heme catabolism 
[1]. Upon its production, bilirubin has been found to confer both 
neuroprotective antioxidant characteristics as well as neurotoxic 
properties [3]. A thorough understanding of the intricate 
interactions between bilirubin and the central nervous system 
is necessary since it may have profound implications on the 
treatment modalities used in the care of critically ill patients. 

NEUROPROTECTIVE ROLE OF BILIRUBIN
Upon degradation of heme by HO, the product biliverdin 

is rapidly converted to unconjugated bilirubin by biliverdin 
reductase (BVR) [3]. Unconjugated bilirubin is prevented from 
crossing an intact blood brain barrier, and thus from accumulating 
in the central nervous system, because it is mostly bound to 
albumin in the plasma [4]. Our lab has previously shown that 
bilirubin exhibits potent antioxidant activity and is protective 
against H2O2-induced free radical damage to neuronal cells in 
vitro [5]. When bilirubin serves as an antioxidant, it is oxidized 
back to biliverdin, where it can then be acted upon once again by 
BVR to regenerate bilirubin [6]. This bilirubin-biliverdin redox 
loop might explain why bilirubin has such powerful antioxidant 
effects when it is present in low physiologic concentrations 
in neuronal cell cultures [5]. While HO-2 makes up most of the 
heme oxygenase activity in the brain, HO-1 has been identified 
in specific cell types in the nervous system including microglia 
and macrophages [6]. Recently, propofol post-treatment of rats 
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Abstract

Bilirubin is a primary product of heme catabolism and exhibits both neuroprotective 
and neurotoxic effects. When present at physiologic concentrations, bilirubin is a 
potent antioxidant and serves to protect brain tissue from oxidative stress insults. The 
use of the anesthetic propofol attenuates ischemic injury in rats by exploiting these 
neuroprotective properties. At pathologic levels, bilirubin has been implicated as 
a neurotoxic agent, demonstrating the ability to aggregate and adhere to cellular 
membranes, thereby disrupting normal cellular function. Bilirubin-associated toxicities 
are amplified by administering drugs such as anesthetics that compete with bilirubin 
for albumin binding sites, resulting in increased plasma bilirubin concentrations. As such, 
it is crucial that bilirubin is considered in the critical care management of patients with 
hemorrhagic stroke, cerebral ischemic damage, and critically ill newborns.
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after middle cerebral artery occlusion was shown to attenuate 
ischemic injury in part by upregulating HO-1 [7]. Furthermore, 
experimental evidence in a mouse model of cerebral ischemia 
demonstrated greater neuronal damage in HO2-/- knockout mice 
compared to their wild type counterparts, providing additional 
support for bilirubin’s neuroprotective role in the brain [8]. 
Due to bilirubin’s antioxidant capabilities, many have proposed 
that physiologic neonatal unconjugated hyperbilirubinemia 
evolutionarily developed as a protective mechanism [3].

BILIRUBIN-ASSOCIATED NEUROTOXICITY
In addition to serving a protective role, bilirubin has also 

been implicated in the progression of neurological dysfunction 
in many pathological states. Many of these conditions increase 
bilirubin concentrations above physiologic levels, where the 
toxic effects of bilirubin start to exceed the protective antioxidant 
benefits, resulting in damage to the nervous system [9]. Bilirubin 
is neurotoxic when it reaches micromolar concentrations, and this 
is the same level at which it was found to aggregate and adhere to 
cellular membranes, disrupting normal cellular function [10]. In 
the critical care setting, it is important that attention is given when 
selecting drugs that compete with bilirubin for albumin-binding 
sites since they effectively increase plasma bilirubin levels. For 
example, the fatty acid components of propofol displace bilirubin 
from albumin, amplifying bilirubin-associated neurotoxicity in 
susceptible patients [11].

CLINICAL IMPLICATIONS OF BILIRUBIN ACTIVITY
Neurotoxicity following hemorrhagic stroke

Hemorrhagic stroke occurs when a weakened blood vessel 
ruptures, resulting in bleeding into the brain and subsequent 
neuronal injury. Patients with hemorrhagic stroke can have 
additional complications that lead to secondary damage days 
after the initial insult, such as vasospasm and cerebral ischemia 
[12]. The presence of blood in the brain locally induces HO-1 
causing an increase in production of unconjugated bilirubin [2]. 
Preclinical data has suggested that the environment immediately 
surrounding the hematoma is highly conducive to oxidative 
reactions, facilitating the conversion of bilirubin into bilirubin 
oxidation products (BOXes) [12]. BOXes in cerebrospinal fluid 
follow a similar time course as the onset of cerebral vasospasm, 
and have proven to be vasoactive in both in vivo and in vitro studies 
[2]. These results collectively suggest that BOXes either cause 
or contribute to cerebral vasospasm and the resulting delayed 
neurologic deterioration following hemorrhagic stroke. 

Bilirubin as a negative prognostic biomarker in 
ischemic stroke

Ischemic stroke takes place when a blood vessel supplying 
the brain is obstructed, which produces downstream hypoxic-
ischemic conditions and increased oxidative stress [13]. With 
these conditions, bilirubin formation is amplified significantly 
due to HO-1 induction. It has been proposed that the serum 
bilirubin level is a biomarker of the degree of ischemic damage 
following stroke [14]. Clinical studies have found that high serum 
bilirubin levels measured at the time of clinical presentation 
positively correlate with stroke severity and degree of disability 
three months post-ictus [13]. These data provide compelling 

evidence for the use of bilirubin as an early clinical indicator in 
the management of patients following ischemic stroke.    

Manifestations of bilirubin activity in the neonate

Newborns commonly develop a transient increase in 
unconjugated bilirubin levels, commonly referred to as 
“physiologic jaundice,” which often resolves without any 
consequences [15]. By virtue of the intrinsic antioxidant effects 
of bilirubin, physiologic jaundice confers protection to neonatal 
tissue that otherwise would be more susceptible to damage by 
oxidative stress [10]. Additionally, breastfed neonates have 
higher unconjugated bilirubin levels than formula fed infants, 
suggesting that physiologic jaundice is well tolerated and maybe 
confers an evolutionary advantage [16]. However, additional 
sources of hemolysis may increase the production of unconjugated 
bilirubin concentrations above this physiologic range [3]. 
These conditions include hemolysis due to ABO or Rh blood 
incompatibilities between the mother and fetus, G6PD deficiency, 
and trauma during birth [17]. Pathological levels of bilirubin 
can be neurotoxic leading to kernicterus or neonatal bilirubin 
encephalopathy [9]. In the brain, high bilirubin concentrations 
can inhibit mitochondrial enzymes, disrupt DNA synthesis, and 
attenuate protein production [3]. Acute bilirubin encephalopathy 
results in injury to the basal ganglia and various brain stem nuclei 
[18]. Universal neonatal hyperbilirubinemia screening programs 
have been implemented to detect and treat pathologic jaundice 
and prevent kernicterus [18]. There is a paucity of publications 
about common anesthetic medications used in neonates (such 
as propofol used during neonatal surgery) and their interactions 
with bilirubin levels. Research in neurotoxicity and neonatal 
anesthesia should consider the interplay between anesthetics 
and levels of unconjugated bilirubin. 

CONCLUSION
Preclinical and clinical evidence has shown that bilirubin can 

function as both a neuroprotective and neurotoxic agent. The 
neuroprotective mechanisms conferred by bilirubin warrant 
further exploration in an effort to exploit their therapeutic 
potential. Likewise, bilirubin has been found to play an important 
role in the progression of various neuropathologic conditions, 
such as hemorrhagic stroke, cerebral ischemia, and kernicterus 
of the newborn. Ultimately, it is apparent that bilirubin plays 
a significant role in both the development and prevention of 
neurological dysfunction and therefore should be considered in 
management of the critical care patient.
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