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Abstract

Few studies have assessed the effects of tannery effluents intake in mammalian 
animal models, despite the discharge of tannery effluents into water bodies without 
treatment are environmental and public health problems in many countries. This study 
therefore aimed to evaluate the effects of the mice parental generation exposure 
to tannery effluent on the anxiety and depression behaviors in its offspring, based 
in previous findings that demonstrate central nervous system damage in adult mice 
exposed to xenobiotic. For this, adult mice C57BL/6J were exposed for 60 days 
to the experimental treatments: tannery effluent diluted in water at concentrations 
of 7.5%, 15% or only drinking water (control group). Male and female mice were 
put for mating and the pregnant females continued exposure to effluent in the 
treatment groups, until lactation period. After weaning the offspring were submitted 
to behavioral tests, elevated plus-maze test (predictive of anxiety) and forced swim 
test (predictive of depression). Our date demonstrated the tannery effluent effects 
the offspring, increasing their anxiety index, decreasing the time in open-arms 
ratio and the frequency of open-arms entries, indicating an increase in anxiety-like 
behavior. Regarding forced swim test, we observed increased time in immobility in the 
experimental groups, indicating depression-like behavior. Thus, our findings support 
the hypothesis that parental exposure to tannery effluents, containing neurotoxic 
substances, cause anxiety-and depression-like behavior in the offspring.

ABBREVIATIONS
EPM: Elevated Plus-Maze; FST: Forced Swim Test

INTRODUCTION
Industrial processes and human activities typically generate 

specific wastes, which are composed of different substances 
and can be harmful to the environment and human health 
[1,2]. Among all the industrial wastes, tannery effluents are 
ranked as the highest pollutant [3] and produce a considerable 
pollution load by discharging untreated effluents directly into the 
environment [4].

This problem is intensified due the incorrect discharge of 
produced effluents into water bodies, causing a serious risk of 
environmental contamination [4-6]. Tannery effluent, even 

after treatment, contains considerable organic and inorganic 
substances, such as acids, phenols, sulfates and sulfides, and 
toxic elements, such as chromium, used during the tanning 
process [7,8]. The heavy metals and organic compounds released 
are one of the key factors that exert negative effects in humans 
and environment causing toxicity to plants and other forms of 
biotics that are continually exposed to potentially toxic heavy 
metals. Nowadays, the intense growth of this type of industry in 
certain localities has shown how the waste can cause irreversible 
damage to the water bodies and their vicinity [9].

Tanneries can generate a considerable pollution load by 
discharging untreated effluents directly into the environment 
due to the poor enforcement of law [10]. For example, there 
are nearly 300 tanneries in Hazaribagh, Dhaka, which are 
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discharging daily about 18,000 L of liquid waste, 115 tons of 
solid wastes during off-peak time [11]. According to Rusal et al., 
[12], 60,000 tons of raw hides and skins are processed in these 
tanneries every year, which release daily approximately 95,000 L 
of untreated effluents into the environment, resulting into a dead 
river, named Buriganga. 

Toxicological studies demonstrated different effects of 
tannery effluents, like teratogenicity in sea urchin species, 
microalgae growth reduction and a variety of toxic effects in 
micro-crustaceans [13]. However, few studies investigated 
the tannery effluents effects in mammals. Siqueira et al., [14] 
demonstrated that mice exposed to different concentrations 
of tannery effluent exhibited a state of anxiety. Our group has 
studied the exposure of C57Bl/6J mice to tannery effluent and 
recently we showed that mice exposure, for 120 days, to 0.1%, 
1% and 5% of the tannery effluent diluted in water, presented 
anxiety-and depression-like behaviors [15] and memory deficit 
[16]. In female C57Bl/6J mice our data demonstrated that 
exposure to 7.5% and 15% tannery effluent (60 days) increased 
the anxiety-like behaviors. Regarding forced swim test, we did 
not observe changes in the evaluated behaviors [17].

Besides the neurobehavioral effects in mice exposed to 
tannery effluents from drinking water, a possible environmental 
contamination is a transgenerational way, which is transmitted to 
the offspring by different routes [18-22]. Therefore, considering 
that heavy metals such as chromium, cadmium, nickel and lead 
(presents in high concentrations in tannery effluents) cause 
reproductive disruptions in mice [23-27], it is possible that 
the exposure of parental to the tannery effluent may cause 
behavioral disruptions on the offspring. Studies about the effects 
of tannery effluents on the offspring behavior do not exist in the 
literature. Our hypothesis is that chronic exposure to tannery 
effluents of the parents (male and female mice) induces anxiety-
and depression-like behaviors in the offspring of C57Bl/6J mice.

MATERIALS AND METHODS
Animals and experimental groups	

This study used 36 adult mice (18 males and 18 females) 
C57Bl/6J (3 months old), nulliparous which were housed in the 
Laboratory of the Biological Research of the Instituto Federal 
Goiano - Campus Urutaí (Urutaí, GO, Brazil). The mice were 
randomized by body mass and housed in polypropylene boxes 
(30.3 x 19.3 x 12.6 cm, maximum of three animals per cage). 
All animals were housed in light/dark cycle of 12/12 h in shelf 
ventilated under controlled temperature and humidity (22-
25ºC and humidity of 55-60%). All procedures were approved 
by the Ethics Committee on Animal Use (CEUA) of the Instituto 
Federal Goiano – Campus Urutaí (GO, Brazil) (protocol No. 
17/2014). Meticulous efforts were made to ensure minimal 
suffering of animals and reduce external sources of stress, pain 
and discomfort. We used only a minimum number of animals to 
produce reliable scientific data.	

Initially the animals were distributed into three experimental 
groups (n = 6 per group; 6 males and 6 females): the control 
group, in which the animals received only drinking water and 
two effluent groups which the animals were exposed to tannery 
effluent diluted in water at 7.5% and 15%. The mice (males 

and female) were exposed for 60 days before mating. After this 
period, the females were put in males’ boxes, forming six mating 
couples in each experimental group for a period of 15 days. 

The pregnant females, kept in separated boxes, continue to 
receive treatment (water, 7.5% or 15% of tannery effluent) until 
the weaning, which occurred 28 days after the puppies birth. 
Thus, exposure to tannery effluent covered the pre-pregnancy, 
pregnancy and lactation in the maternal mice. After weaning, the 
offspring of each experimental group (n = 36 in control group; n = 
24 in 7.5% group ; n = 30 in 15% group) was tested to predictive 
of anxiety and depression behaviors in rodents, as detailed in 
Figure 1, which illustrate the temporal distribution and the 
experimental design.

Elevated plus-maze (EPM)

The elevated plus-maze (EPM) test has been widely used to 
measure anxiety in ro-dents [28-30]. The apparatus used for the 
EPM test is in the configuration of a + and comprises two open 
arms (25 x 5 x 0.5 cm) across from each other and perpendicular 
to two closed arms (25 x 5 x 16 cm) with a center platform (5 x 5 
cm). The open arms have a very small wall (0.5 cm) to decrease 
the number of falls, whereas the closed arms have a high wall 
(16 cm) to enclose the arm [29]. The behavior testing room was 
soundproofed, and the illumination levels were maintained at 
100 lx. The mice were placed individually in the center zone of 
the maze, facing an open arm, and were allowed 5 min of free 
exploration. All mice were tested just once. Before each test, the 
arena was cleaned with 70% ethanol. EPM test was performed 
between 1:00 and 5:00 p.m. The anxiety index was calculated 
according to Cohen et al. [31], Contreras et al. [32] and Estrela 
et al. [33] as follows: Anxiety Index = 1 − [([Open arm time/Test 
duration] + [Open arms entries/Total number of entries])/2]. 
Furthermore, we evaluated the locomotor activity of the animals 
in the EPM (total number of entries = open arms + closed arms), 
frequency of open-arms entries and time spent in open arms 
ratio, according to Rodgers & Dalvi [28] and Walf & Frye [29]. 

Were also evaluated ethological components (time), to 
include: stretched-attend postures (exploratory postures in 
which the body is stretched forward then retracted to the 
original position without any forward locomotion), head-dipping 
(exploratory movements of head/shoulders over the side of the 
maze) and self-cleaning (sequences of movements oriented to 
clean and maintain the fur and skin of the head and body). These 
ethological elements have been linked through factor analysis 
to risk assessment, directed exploration, and displacement 
activity, respectively, according to Rodgers et al. [34]. Freezing 
was also evaluated, operationally defined as the total absence of 
movement of the body and vibrissa, except the ones required for 
respiration, for at least 6 s, according to Reimer et al. [35].

Behavioral analysis for the EPM test was performed using 
the PlusMZ software. Three trained observers reviewed the 
videos; each video was analyzed twice, yielding an inter-observer 
concordance greater than 85%, for all parameters and tests 
evaluated.

Forced swim test (FST)

The FST (according to Costa et al. [36]) consisted of 
individually placing the mouse into cylindrical tank (height 18.5 
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Figure 1 Temporal distribution of the experiment and realized analysis.

cm, diameter 12.5 cm) containing clean water at 25°C (13.5 cm 
deep). After the test (6 min), the mice were taken out of the water 
and dry with towel and hairdryer before being returned to their 
home cages. The FST took place between 1:00 and 5:00 p.m. 
All test sessions were videotaped using a video camera located 
30 cm at the side of the tank, to allow further evaluation of the 
time spent in swimming, climbing and immobility. Immobility 
was defined as a lack of motion of the whole body, when mice 
ceased struggling and remained floating motionless in the 
water, making only those movements necessary to keep the 
head above the water. Swimming was recorded when large and 
horizontal movements of the forepaws were performed, leading 
to displacement of the body around the cylinder. Climbing was 
considered when displayed vigorous vertical movements of the 
forepaws, directed against the wall of the tank, leading to body 
displacement around the cylinder. These animals’ behavioral 
parameters were recorded during the first 2 minutes of the test. 
The decision to examine the first 2 min of the test was based in 
Costa et al. [36]). The authors suggest that the first 2 min of the 
forced swim test in mice is an appropriate period to evaluate the 
effects of antidepressants on immobility. 

During neurobehavioral tests the offspring was kept with 
their mothers to prevent stress from maternal separation, which 
has been used for over two decades to study the early stress 
results in rodent models including changes in hypothalamic-
pituitary-adrenal axis [37,38]. Furthermore, the physical 
development and offspring reflexes were not evaluated in order 
to prevent that the manipulation of the offspring might provide 
potential interferences in neurobehavioral test performed in this 
study.

Tannery effluent and determination of concentrations

The tannery effluent used is classified as wet-blue, generated 
from the tanning stage, and obtained by a tannery industry in the 
state of Goiás (Brazil) (Table 1). The definition of tannery effluent 
concentrations used in this study is due the effluent generation 
data by the grantor company, taking as a basis the operating 
system and amount of skins processed daily in the company. 
Moreover, it was considered to calculate the concentrations a 
hydrological available data about two rivers that served illegally 
as receiving bodies of these effluents. The concentration of 7.5% 
tannery effluent was determined considering the watercourse 
in the dry season and the concentration of 15% was determined 
considering the reception of such waste in the rainy season. The 
grantor company name and the receptors river were purposely 
omitted for ethical reasons.

Statistics 

All data were analyzed using the ASSISTAT software (version 
7.7 beta). Data normality was tested using Anderson-Darling and 
Kolmogorov-Smirnov tests. The data were compared using one-
way ANOVA followed by Tukey’s test. Statistical differences were 
considered significant when the P value was below 0, 05.

RESULTS AND DISCUSSION
We found behavioral changes in the offspring from the 

parents mice exposed to tannery effluents in EPM and forced 
swim tests. In the EPM test, the offspring from the 15% group 
presented increased anxiety index (F (2, 87) = 7.195, p = 0.008), 
decreased time spent in open-arms ratio (F (2, 87) = 8.336, p 
= 0.005) (Figure 2A) and decreased frequency of open-arms 
entries (F (2, 87) = 4.467, p = 0.035) (Figure 2B), compared to 
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Table 1: Physicochemical and chemical characterization of the water, tannery effluent (7.5%, 15% and 100%) used in the present study.

Parameters1 Tannery 
effluent (100%) Drinking water Tannery 

effluent (7.5%)
Tannery 

effluent (15%)

WHO Guidelines for drinking-water Quality2

Normally found in 
fresh water/surface 
water/ground water

Health-based 
guideline by the 

WHO
pH at 25ºC (UpH) 4.05 7.19 5.17 4.87 No guideline 6.5 – 8.5

Total dissolved solids 
(mg.L-1) 37,380.00 80.00 2,877.5 5,675.0 No guideline No guideline

Zn (mg.L-1) 0.30 0.03 0.05 0.07 No guideline 3.00 mg.L-1

Na (mg.L-1) 9,690.00 5.01 731.4 1,457.76 <20 mg.L-1 200 mg.L-1

Ca (mg.L-1) 601.20 4.00 48.8 93.58 No guideline No guideline

Mg (mg.L-1) 364.80 2.43 29.6 56.79 No guideline No guideline

Pb (mg.L-1) 0.32 ‘<0.01 ‘<0.01 0.05 No guideline 0.01 mg.L-1

As (mg.L-1) <0.01 <0.01 <0.01 <0.01 No guideline 0.01 mg.L-1

Cr (mg.L-1) 859.00 <0.05 64.4 128.85 <0.002 mg.L-1 0.05 mg.L-1

Cd (mg.L-1) 0.95 <0.001 0.1 0.14 <0.002 mg.L-1 0.003 mg.L-1

Ni (mg.L-1) 5.50 <0.01 0.4 0.83 <0.02 mg.L-1 0.02 mg.L-1

1The analysis of the raw tannery effluent and water followed the methodology recommended by the American Public Health Association [74].
2The whose guidelines for drinking-water quality, set up in Geneva, 1993, are the international reference point for standard setting and for drinking-
water safety 

offspring from control group. Moreover, offspring from the 15% 
group presented decreased locomotor activity, in comparison 
with control group, measured indirectly by the total crossings (F 
(2, 87) = 5.251, p = 0.023) (Figure 2B). 

The EPM revels anxiety-like behaviors in pups from tannery 
effluents groups. The time spent in open-arms and frequency 
of open-arms entries in EPM is based on the mice exploratory 
behavior and their natural aversion to open area [28-30]. 
Therefore, the elevated anxiety index, the reduced frequency 
of open arms ratio and open arms entries indicate anxiety-like 
behaviors induced by chemicals presents in the tannery effluent.

Regarding evaluation of complementary ethological elements, 
we observed an increase in time (F(2,87) = 4.669, p = 0.031) (Figure 
3A) and frequency of the freezing behavior (F(2,87) = 5.903, p = 
0.016) (Figure 3B); increase in the time of the stretched-attend 
postures (F(2,87) = 21.522, p < 0.001)and decrease in time of the 
episodes of head-dipping (F(2,87) = 8.281, p = 0.005) in the offspring 
of7.5% and 15% tannery effluent groups (Figure 3A). The time of 
the self-cleaning behavior was higher in the offspring from mice 
of the 15% group (F(2,87) = 3.313, p = 0.042), in comparison with 
control group (Figure 3A). The frequency of the stretched-attend 
postures was higher in the offspring from mice of the 7.5% group 
(F(2,87) = 9.392, p = 0.003) and the frequency of the self-cleaning 
was higher in the offspring from mice of the 15% group (F(2,87) = 
6.865, p = 0.010), in comparison with control group (Figure 3B). 
The frequency of the head-dipping was minor in the offspring 
from mice of the 15% group (F(2,87) = 9.540, p = 0.003) (Figure 
3B). 

Our results corroborate to the primary behaviors observed 
in the EPM test. The offspring from parental generation exposed 
to tannery effluents exhibited less time in freezing behavior, 
head-dipping and stretched-attend postures, which is consistent 
with an anxiogenic effect of the treatments. In relation to the 
head-dipping behavior, it is inversely associated with anxiety, as 

discussed by Anseloni & Brandao [39], which is consistent in this 
study at an anxiogenic behavior in animals exposed to tannery 
effluent diluted in water. Regarding the behavior stretched-
attend postures, it can be defined as a risk assessment behavior 
[40]. Therefore, an increase in time of this behavior found in this 
study represents increasing animal anxiety during the exposition 
to the open area on the EPM.

Furthermore, when a mouse explore a new place potentially 
dangerous or a threatening situation, it gets immobile, alert, 
with tense muscles, read for quick and vigorous action, defined 
as “freezing”. Alternating with the immobility, the animal can 
perform careful exploitation of the environment, making a risk 
assessment. Thus, an increase in the time of this risk assessment 
behavior, as seen in our study, is consistent with an anxiogenic 
behavior, as discussed in different studies [41,42].

Regarding the FST, we observed that offspring from female 
mice exposed to tannery effluent (7.5% and 15% groups) 
showed a higher immobility time (in 120 s) (F(2,87) = 2.613, p 
= 0.022), compared to offspring control. The immobility in the 
FST was originally considered as a model of depression [43,44] 
and thought to represent the psychomotor retardation shown by 
many depressed patients. For the time spent in swimming (F(2,87) 
= 0.613, p = 0.551) and climbing (F(2,87) = 0.345, p = 0.711), there 
were no differences between the experimental groups (data not 
shown).

There are multiple mechanisms through which parents 
can influence their offspring and recently studies showed 
environmentally induced epigenetic disease and disease risk 
[45]. The transgerational epigenetic effects on the brain can 
be inherited from paternal or maternal, by different pathways 
[21-22]. Though, the study did not aimed to evaluate how is the 
heritability of the effluent effects or the maternal and paternal 
roles in the observed effects [46]. However, there is more 
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maze test of the offspring from mice exposed or no to tannery effluent in different concentrations diluted in water (control, 7.5% and 15%). In “A”, distinct lowercase and 
uppercase indicate significant differencesamong the experimental groups for anxiety index and time spent in open arms ratio by elevated plus-maze test, respectively 
(one-way ANOVA followed by Tukey’s test  at 5% probability). In “B”, distinct lowercase and uppercase indicate significant differencesamong the experimental groups for 
total crossings and frequency of open-arms entries by elevated plus-maze test, respectively (one-way ANOVA followed by Tukey’s test  at 5% probability). Control group 
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0

10

20

30

40

50

60

70

80

b

a
a b

a
a

a

b b

b

ab

a

Contr
ol 7.5% 15% 7.5% 15%

Con
tro

l 7.5% 15%

Contr
ol

7.5% 15%

Contr
ol

Freezing

Stretched-attend
postures

Head-dippings

Self-grooming

A

Et
ho

lo
gi

ca
l m

ea
su

re
s 

(t
im

e 
- s

ec
on

ds
)

Figure 3 Ethological complementary elements in the elevated plus-maze test of offspring from mice exposed or no to tannery effluent in different concentrations diluted 
in water (control, 7.5% and 15%).  Distinct lowercase indicated significant differences among the experimental groups for each ethological elements evaluated (time and 
frequency), one-way ANOVA followed by Tukey’s test  at 5% probability. Control group = 36 pups; 7.5% group = 24 pups and 15% group = 30 pups.

evidence on the epigenetic effects of literature in the offspring, 
caused by pollutants, inherited from mothers [19,47].

Regarding the pre and neonatal exposure, there is a growing 
body of evidence that different pollutants can alter the epigenetic 
programming and/or increase the risk of F1, F2 and even 
F3 present some diseases or neurobehavioral changes [20], 
evaluated the impact in the offspring of mice from exposure to 
heavy metals [47-50], smoke [51-53], air pollutants [54,55] and 
endocrine disrupters discharging on the environment [56,57].

Few studies involving the exposure of mammals to tannery 
effluents and their neurobehavioral effects were developed 
[14,16,58]. Moreover, these studies have assessed the effects of 
tannery effluents in adult mice, without evaluate the offspring 

effects (which is not the case in this study), and possess 
characteristics that make it difficult to compare results. Siqueira 
et al., [14] demonstrated that male Swiss mice (adults) exposed 
to effluent tannery diluted in water at a concentration of 1% for 
21 days showed predictive anxiety behavior, suggesting affect to 
the animals’ nervous system central.

Moysés et al., [58] investigated possible neuro and hepatotoxic 
effects and predictive behaviors of anxiety, depression and 
memory deficits induced by chronic exposure to tannery 
effluents in adult male Wistar rats. These authors did not observe 
any change in the evaluated parameters and suggest that the 
experimental model used in the study may not be an appropriate 
type for toxicological studies of tannery effluents. However, we 
have recently demonstrated that male and female Swiss mice 
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exposed for 15 days at 1% of effluent tannery diluted in water and 
offered by gavages to the animals (unlike the studies mentioned 
above, which they offered to the tannery effluent animals diluted 
in water troughs of the animals), caused memory deficits [16].

Other particularity of these papers refers to the type of 
effluent tannery used in the experiments ranging [16,17,58], 
the animal’s strain used as experimental model (our work is the 
unique to use inbred mouse strain) and the period of exposure to 
xenobiotics. 

Conforming discussed by Shakir et al., [59], the tannery 
effluents are xenobiotics, which the chemical composition is 
complex and varies greatly between tannery industries. In a study 
that aimed to analyze the effects of in vitro exposure of tannery 
wastewater on the activity of different enzymes in mice, rats and 
Drosophila melanogaster, Moysés [58] identified more than 20 
organic chemicals in the effluent, which allows inferences about 
the difficulty to understand which components of these effluents 
are responsible for the observed effects. 

Therefore, it is interesting that the effects of these effluents 
intake on the health of organisms can differ, depending on the 
species and evaluated lines, shape and length of exposure, age and 
sex of the animals, and on the exposure of parental generation to 
xenobiotics in question. Our findings suggest effects of tannery 
effluents beyond the oral ingestion of the residue by animals in 
adulthood. We noted behavioral disruptions in the offspring, 
caused possibly by impairment in the central nervous system.

Although analysis of the organic composition of the effluents 
was not performed, we suggest that constituents (inorganic and/
or organic) of the effluent may have disturbed the production/
action of neurotransmitters in the central nervous system organs 
or a dysregulation of the hypothalamic–pituitary–adrenal (HPA) 
axis which could be related to anxiety and depression. Anyway, 
although detailed analysis of the organic composition of the 
effluents have not been conducted in this study, hampering the 
understanding of mechanisms related to the anxiogenic and 
depressive-like effects observed in the animals, it is suggested 

that constituents (organic and/or inorganic) of the effluent 
may have acted in the animals’ body antagonistic or contrary 
to benzodiazepines, drugs commonly used to treat anxiety 
disorders [60].

As discussed by Kryger& Roth [61], this group of substances 
is characterized by the neurotransmitter action in the gamma-
amino butyric acid system (GABA) that is the major inhibitory 
neurotransmitter of the central nervous system (CNS). GABA 
and its agonists, such as benzodiazepines, barbiturates, 
imidazopiridinos derivatives, besides the alcohol, act in a 
transmembrane structure of the GABA-receptor called GABAA 
complex [62]. The GABAA complex, in turn, is mainly made up 
of five protein subunits (2 alphas, 2 betas and one gamma) with 
extramembrana receptors for various substances [61]. The main 
mechanism of action of these substances is characterized by 
binding to receptors in the GABA complex, and the action, directly 
or indirectly of these substances in those receptors, opening the 
chloride channel with subsequent anion influx into the neuron 
and resulting in hyper polarization of the cell, causing an anxiety-
like effect [60]. Although rare, work involving contaminants in 
rodents demonstrate behaviors similar to those seen in this study 
[14], supporting the hypothesis that the effluent from tannery 
used may have acted antagonistically to these drugs. Moreover, it 
can be assumed that the effluent from tannery or its constituents 
may have interfered negatively on serotonergic transmission 
and/or HPA axis. Different studies have shown the implication of 
serotonin in the control of anxiety, suggesting that an anxiogenic 
effect may be induced by increase the level of serotonergic 
activation, in rodents [63,64].In addition, disturbances in the 
HPA axis has caused changes compatible with a depressive-like 
behavior [65-67]. 

Among the chemical elements present in high concentrations 
in the tannery effluent used in this study (Table 1), which the 
neurotoxic effects are well known, refers to cadmium. Although 
rare, some studies have demonstrated effect of the cadmium in 
mice central nervous system, when exposed female in pregnancy/
lactating or their offspring, what could be related to anxiety and 
depression [68,69].

Another heavy metals found in high concentrations in the 
effluent used is nickel (Table 1). Despite the lack of studies about 
parental exposure of nickel on predictive behaviors of anxiety 
and depression in the offspring of rodents, there is evidence that 
the intake of the element by mothers constitute threat to progeny. 
Saini et al., [49] showed that Swiss mice exposed to Ni2+ and 
hexahydrate nickel chloride (NiCl2.6H2O) showed a significant 
effect on the offspring, like decreased of brood size, body mass, 
higher mortality and increased frequency of morphological 
abnormalities in eyes, limbs and tail.

The lead is another important element present in the tannery 
effluent and its effects are sufficiently studied. Harmful effects 
caused by lead have been observed in the rat neurons structural 
plasticity, causing debilitation of spatial memory and learning 
processes [70]. Recently Yu et al., [71] demonstrated changes 
in key synaptic proteins (such as PSD-95, nNOS and SYP) in 
the hippocampus of lead-exposed offspring, suggesting that 
changes in these proteins in the hippocampus can influence the 
properties of synaptic transmission and cause nerve damage 
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Figure 4 Spent time in immobility (in 120 s) in the forced swim test of offspring 
from mice exposed or no to tannery effluent in different concentrations diluted 
in water (control, 7.5% and 15%). Distinct letters indicate significant differences 
among the experimental groups by one-way ANOVA followed by Tukey’s test  at 
5% probability. Bars indicate mean + standard deviation. Control group = 36 
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which may induce anxiety disorders, depression and deficits in 
learning ability and memory. Thus, whereas the hippocampus 
is an important brain region related to anxiety disorders and 
depression [72,73], the finding of Yu et al., [71], together with 
the other aforementioned studies support the hypothesis that 
predictive anxiety and depression behavior observed in the 
offspring derived from 7.5% and 15% tannery effluent groups 
can be related to hippocampal damage caused by one or more 
constituents of the tannery effluent.

Interestingly, our data provide the first report about tannery 
effluent effect on the offspring behavior and reinforce the recent 
evidences that parental exposure of diverse environmental 
chemicals dysregulates the offspring epigenome, with potential 
disorders and diseases [20]. The mechanism from tannery 
effluent which induce anxiety-and depression-like behavior, the 
major substances and the influence on the maternal and paternal 
roles are urgent questions to contribute for risk assessment on 
human and animal health.

CONCLUSION
The offspring of parental C57Bl/6J mice exposure to tannery 

effluents (7.5 and 15%) presented predictive behaviors of 
anxiety and depression, soon after the weaning, confirming our 
hypothesis. We demonstrate in the first time the impairment 
effects of tannery effluents in the mice offspring, which allows 
inferring that the tannery effluent intake by parents constitutes a 
threat to the progeny.
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