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Abstract

Among other Sparidae species, the gilthead seabream Sparus aurata is the most 
important fish species in the Mediterranean aquaculture, achieving good growth 
performances and progressive increased production. However, health management 
remains as one of the major concerns of the gilthead seabream culture, because 
diseases can cause major losses to commercial crops. In suboptimal conditions of 
intensive rearing systems, the danger of disease outbreaks is always present. Since 
quarantine restrictions were rarely adopted, several microbial pathogens have been 
transmitted to other geographic locations, and frequently they have colonized new 
fish hosts and/or new environments. In this work, we have updated some of the most 
important and also serious pathologies and diseases that from many years ago 
and presently affect to reared gilthead seabream specimens, mainly those with 
uncertain or complex aetiology (genetic, nutritional, zootechnic, among others), such 
as malformations-vertebral deformities, as well as those more classical and emergent 
parasitic and infectious pathologies and diseases. In addition, avalaible treatment 
and/or prophylactic measures are also discussed. 

INTRODUCTION 
Gilthead seabream (Sparus aurata), a member of the family 

Sparidae, is found in the Mediterranean Sea and extends into 
the Atlantic Ocean from the British Isles south to Senegal. Most 
countries around the Mediterranean culture gilthead seabream; 
Greece, Turkey, and Spain are the major producers in the region, 
accounting for over 70% of total production. The culturing of S. 
aurata has achieved impressive strides in much less than two 
decades, going from an estimated 110 Tm of fish in 1985 to more 
than 173,000 Tm in 2013 [1,2]. This success is the result of strong 
research and development programs in many of the countries, in 
conjuction with a persistently strong market demand for this fish 
species. However, the rapid development of gilthead seabream 
farming has not been paralleled by adequate progress in the 
veterinary aspects of its culture. 

Fish diseases are a primary constraint to the culture of many 
aquatic species, avoiding both economic and social development 
in producer countries. This situation can be attributed to 
a variety of interconnected factors such as, the increased 
globalization of trade in live aquatic animals and their products; 
the intensification of aquaculture through the translocation of 
broodstock, postlarvae, fry and fingerlings; and the development 

and expansion of the ornamental fish trade to name a few [3]. An 
adequate aquaculture practice must also consider other matters 
that are not directly related to fish health because public concerns 
have a significant influence on how and where fish are cultured. 
Thus, the environmental impacts of the culture operation, the 
safety of cutured product for human consumption, and the fish 
welfare are other important factors taking into account to achieve 
a sustainable practice of the aquaculture [4]. 

Most of the diseases that cause serious problems in 
cultured fish are provoked by exotic pathogens; that is, they 
were inadvertently introduced into a region via infected fish 
from another geographic area. Thus, an effective biosecurity 
programme is vital to maintaining healthy animals and to reduce 
the risk of adquiring disease in a fish facility. Biosecurity refers 
to the implementation of methods to prevent the spread of 
infectious diseases within a farm, and to avoid their transmission 
to wild fish populations or to adjacent fish farms. Key methods 
used to maintain biosecurity are pathogen inactivation strategies 
and avoiding fish-to-fish transmission by mean of geographic 
isolation of affected farms, separation of diseased fish, specific-
pathogen-free stocks, and quarantine measures [5]. 

In order to minimize the risks of pathogens/diseases 
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associated with aquatic animal movements, there are a number 
of existing global instruments, agreements, codes of practice and 
guidelines (International Codes) that, if implemented, provide 
certain levels of protection. Some of the provisions in the current 
international protocols are not always practically applicable 
to the diseases of concern to a specific region. Therefore, a 
regionally adopted health management programme is considered 
a practical approach. Subasinghe et al. [6], recommended that 
development of standardized methods for disease diagnosis and 
screening of pathogens, along with regular evaluation of their 
effectiveness as compared with other diagnostic methods should 
be a priority task. Vaccination is another established, proven and 
cost-effective method for controlling certain infectious diseases 
in cultured marine animals. Vaccines decrease the severity 
of disease losses, reduce the need for antibiotic use, leave no 
residues in the product and do not induce pathogen resistance. In 
conjunction with good health management and good husbandry 
practices, there is great potential for the use of vaccine technology 
for specific use in marine aquaculture.

In this work, we have revised the main infectious pathologies 
affecting to both wild and reared gilthead seabream; and in 
addition, some pathologies provoked by physiological (i.e. 
nutritional disorders), not optimal or inadequate rearing or 
environmental conditions, and potential genetic factors have 
also been updated. Future perspectives on welfare, treatment 
and prophylactic measures to improve the Mediterranean 
aquaculture are also discussed.

Malformational and skeletal disorders

The presence of morphological abnormalities in reared 
gilthead seabream is an important problem for current 
aquaculture and it entails significant economic losses. 
Malformations can affect different aspects of the morphology of 
the fish such as pigmentation, shape, scales, skeleton and swim 
bladder. The high incidence of some malformations significantly 
reduces the market value of the species commercialized as 
whole fish and implies an additional effort at farms to eliminate 
abnormal fish [7]. The incidence of vertebral deformities, i.e. 
opercular anomalies can vary from 6 to 80% [8-14]. These 
noticeable quantitative variations can be attributed to several 
different variable zootechnnical conditions, optimization in the 
rearing procedures and feeding protocols, and the application 
of genetic improvement programmes (i.e. bloodstock selection 
and breeding) during the last two decades. Skeletal deformities 
are the most relevant malformations and they include head 
and vertebral column anomalies. Lack of operculum and 
lordosis, scoliosis, kyphosis and vertebral fusions are the most 
frequent skeletal anomalies in gilthead seabream, particularly in 
reared fish, but also in wild populations [15]. Similarly, a slight 
association with inbreeding has been reported on skeleton 
abnormalities by Astorga et al. [16], and in addition, Negrín-
Báez et al. [14], reported inheritance of skeletal deformities 
in gilthead seabream, such as lack of operculum, lordosis and 
vertebral fusions, among others. Nevertheless, Castro et al. [10], 
reported only a slight familiar association when comparing 
seabream specimens lacking operculum, but neither between 
lordotics nor between normal ones and, they suggested that most 
phenotypic variation observed for lordosis and lack of operculum 

in gilthead seabream is due to environmental factors. Therefore, 
environmental conditions, nutritional imbalances and genetic 
factors or their interaction, is believed to be on the basis of most 
skeletal alterations S. aurata specimens [9,10,14,17-23]. 

Interestingly, by using histological, histochemistry and 
immunohistochemistry approaches, recently we have been 
registered two types of opercular anomalies in reared gilthead 
seabream specimens [13], which were described according to the 
classification previously reported by Beraldo et al. [24], Type I: 
the folding of the operculum (opercle and sub-opercle) into the 
gill chamber, starting at the upper corner of the branchial cleft 
and extending down to its lower third; and Type II: the partial 
lack of the operculum (lack of development of the opercle, 
subopercle, interopercle and preopercle) with a regression of 
the loose edge extending down to its lower third. The overall 
incidence of fish with deformed operculum was 6.3%. These 
opercular abnormalities unilaterally affected both sides of the 
head: the right (3.3%) and left (3.0%) equally; whereas the 
bilateral abnormality in the operculum only affected 1.1% of the 
reared fish. Fish with a severe external body shape deformity 
showed internal lesions characterised by an accentuated ventral 
curvature (lordosis) of the vertebral column. The degree of these 
pathological symptoms varied along the vertebral column axis 
and mainly affected vertebrae located between the limit of pre-
haemal and haemal areas of the vertebral column (position 11 
to 15 from urostyle upwards). The incidence of fish affected by 
lordosis was 10.1%. These histological and histopathological 
disorders indicated that the reduced opercular surface in the 
Type I deformity in gilthead seabream was mainly due to the 
folding of the edge of the opercle from the superior corner 
towards the gill chamber. The conservation of the different 
opercular bones that compose the operculum suggested an effect 
of the rearing conditions during sensitive developmental periods, 
coinciding with the beginning of skeletogenesis of the opercular 
complex, which is formed by intramembranous ossification from 
a condensed core of mesenchymal cells [24,25]. Considering that 
the supportive tissue of the operculum was not yet formed at this 
early developmental period, mechanical damage (i.e. excessive 
water movements) could cause this opercular malformation [26]. 
Nevertheless, in the opercular deformity (Type II) described in 
gilthead seabream specimens [13], the coalescence between 
opercular bone areas might have caused semi-rigidity and tissue 
fusion of the opercular structures, giving the appearance of 
underdeveloped or incomplete tissue. These opercular disorders 
might be mechanically induced by forced opercular movements 
occurring during ventilation or food ingestion processes [26], 
although the putative involvement of nutritional factors and/or 
environmental pollutants should not be negleted [7]. 

The aetiology of vertebral malformations in fish species is 
complex, multifactorial and still not completely known. Genetic, 
environmental, zootechnical and nutritional factors have 
been frequently associated with different or similar vertebral 
abnormalities in various fish species. Several authors indicated 
that vertebral deformities might appear during the notochord 
segmentation and vertebral centrum differentiation processes 
[22,27]. However, others suggested that these deformities 
are a consequence of disfunction in collagen metabolism at 
notochordal and perinotochordal collagen sheets during early 
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development [28]. However, many vertebral deformities may 
also occur later in ontogeny, for instance during the ongrowing 
period, at which point they are generally induced by mechanical 
overloads [29], or by curvature of the vertebral axis [30], 
or by a combination of both situations [31,32]. According to 
Ortiz-Delgado et al. [13], in the affected vertebral region of the 
lordotic gilthead seabream specimens, a change in chondrocyte 
morphology, from vacuolated to hyper-dense, and an increased 
calcium deposition were evidenced, suggesting that a metaplastic 
shift was involved [33]. Furthermore, in these seabream lordotic 
specimens, a disorganization of the intervertebral region, with 
a complete loss of notochordal sheath integrity was evidenced. 
In addition, imbalanced cell cycling (proliferation vs. apoptosis) 
detected in deformed vertebral centra showing higher cell 
proliferation activity, which could explain the presence of dense 
packaged chondrocytes, occupying most of the intervertebral 
space without vacuolization. Moreover, a higher remodelling 
process may occur in lordotic specimens, such as was evidenced 
by using chondrogenic and osteogenic immunomarkers [7,13,34]. 
In general a preferential accumulation of osteocalcin in compact 
bone and notochord cells was detected in notochordal tissues of 
seabream specimens with deformed vertebrae. It is suggested 
that lordotic vertebrae should be more fragile that those normal 
fish with non-deformed axial structures.

A new type of vertebral malformation, named haemal 
vertebral compression and fusion haemal VCF), was described 
by Lozoides et al. [35]. It consists of deformed cartilaginous 
neural and haemal processes and the compression and fusion 
of vertebral bodies, affecting the posterior part of the vertebral 
column in combination with lordosis. The early anatomical signs 
of the haemal VCF consist of abnormal centrum mineralization, 
malformed cartilaginous neural and haemal processes and 
developing lordotic alterations. The histological examination of 
the deformed individuals reveals that haemal VCF is preceded by 
notochord abnormalities. In older animals suggests that haemal 
VCF is linked to high mortality rates. 

Pathologies provoked by parasitic microorganisms 

Parasitic diseases, also known as parasitosis, are infectious 
(or not) diseases caused or transmitted by eukaryotic organisms. 
Parasites can affect practically all-living organisms; however, 
many parasitic organisms do not cause diseases. They can induce 
stress and immunodepression, and as a consequence secondary 
infections, pathologies and severe disorders diseases, are more 
frequent in those parasited fish. 

The most frequent parasites that affected during the last 
decade to reared gilthead seabream were Amyloodinium 
spp., Cryptocarion spp., Ichthyobodo spp. and Trichodina spp. 
[36,37]. In addition, these parasites are very good indicators 
of contamination in aquatic ecosystems. In fact, high rates of 
mortality and infestations about 80% in gilthead seabream 
specimens reared under highly stressed aquatic ecosystems 
have been scored, with presence of inorganic and organic 
contaminants [38]. Amyloodiniosis or “Velvet disease” is one of 
the most devasting parasitic diseases in temperate mariculture 
[39,40]. Amyloodinium ocellatum, a dinoflagellate protozooa 
highly adapted to parasitism, is able to infect different fish species 
in a wide range of salinities and temperatures (17 to 30ºC). Its life 

cycle has three main phases: a parasitic feeding stage (trophont), 
an encysted reproductive stage (tomont), and a free-swimming 
infective stage (dinospore) [41]. Damages of the gill epithelium 
and osmoregulatory impairment are the likely causes of fish 
death. The dinospores are susceptible to various chemotherapies 
[41,42], but trophonts and tomonts are more resistant. Treatment 
with 100-200 mg/L formalin for 6-9 h detaches trophonts from 
fish, but as tomonts, they resume division after the removal of 
formalin [41]. A copper sulfate treatment (0.75 mg/L) for 14 d is 
also effective, although toxic for juvenile fish [41]. Survivor fish 
acquire a certain degree of immunity [43].

Cryptocaryon irritans (Class Colpodea) produced the “Marine 
White Spot disease”, is a ciliate that invades the epithelium of gills, 
skin, and eyes, compromising the physiological functions of these 
organs. The clinical signs include pinhead-sized whitish “blisters” 
on the skin, epithelial hyperplasia, mucus hypersecretion, skin 
discoloration, corneal cloudiness, and mainly disruption of the 
gill lamellar structure and severe respiratory distress [40]. In 
Mediterranean cultures of S. aurata, the ciliate has been reported 
in Israel, Italy and Spain [44]. The life cycle of this parasite 
consists of four phases: the first is parasitic (trophont), after 3-7 
d of growth, it leaves its host, loses its cilia (protomont), encysts, 
and starts dividing (tomont), eventually producing up to 200 
free-swimming infective organisms (theront). Theronts have a 
life span of 24 h, but their ability to infect a host decreases rapidly 
after 6-8 h [45,46]. Studies on vaccination against Cryptocaryon 
have produced interesting results [47,48], but no commercial 
vaccines are still available.

Trichodina spp. has been observed often infesting the gills 
of reared seabream specimens and also in wild and culture 
sparids in Mediterranean and Atlantic areas [40,49-51]. 
Brooklynella hostilis is a ciliate easily recognizable by its oval, 
dorsoventrally flattened shape, by its notched oral area, and by 
its size [52]. As a gill pathogen, B. hostilis can cause serious skin 
lesions [4], destroying the tissue surface of the hosts by mean 
its cytopharyngeal armature, feeding on tissue debris, ingesting 
blood cells, and causing hemorrhages in the gills [52]. B. hostilis 
was diagnosed in cagecultured gilthead seabream in the Red Sea 
[53].

Microsporidiosis is a disease provoked by eukaryotic 
parasites belonging to the phylum Microsporidia. This phylum 
includes obligate intracellular parasites that infect a wide range of 
vertebrate and invertebrate hosts. Microsporidians have evolved 
an elaborate mechanism for invading animal host cells, but 
have otherwise greatly reduced biological complexity. Although 
the taxonomic affiliation of the Microsporidia has long been 
controversial, they are now known to either fall within the Fungi 
or to be extremely closely related to the Fungi [54,55]. Economic 
losses were recorded in aquaculture due to microsporidian 
infection of fish [55], establishing a complex coexistence with 
the host, for example, the genus Glugea develops a special type of 
hypertrophy forming a xenoma, several of which may aggregate 
into a large pseudotumoral structure, the most adequate 
treatment is the oral administration of fumagillin [4,55]. In the 
Mediterranean region, a microsporidian infection was described 
in juveniles of cultured gilthead seabream in the French coast 
attributed to Glugea sp. [56]. Abela et al. [57], observed lesions by 
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microsporidian parasites (genus Pleistophora) in the muscle of 
cultured gilthead seabream juveniles, and xenome-infections in S. 
aurata provoked by Microsporidium aurata was also reported by 
Morsy et al. [58], in the Red Sea. Similar cases of microsporidian 
infections in the musculature of gilthead seabream have been 
reported in Greece [59], Italy [60], and Spain [40,61]. 

Piscine apicomplexans, belonging to the classes Coccidea and 
Haematozoa, can parasitize a broad spectrum of fish cell types in 
the intestine, swim bladder, liver, spleen, testes, kidney, gills, and 
blood [62,63]. Since coccidiosis provoked in fish subclinical and/
or chronic diseases, they may have been overlooked. However, 
haemogregarine-like organisms were observed in gilthead 
seabream cultured in Israel [64]. Eimeria sparis and Goussia sparis 
were recorded in the intestine of gilthead seabream in different 
facilities in Spain, indicating a wide distribution and a potential 
responsibility in mortalities [49,65,66]. Cryptosporidium molnari 
is another species described in gilthead seabream, detecting 
in its gastric epithelia, with a particularly high prevalence in 
juveniles [67-70]. Affected fish showed abdominal swelling, 
ascitis, whitish feces, and with necrosis of the gut epithelial 
lining. In vitro treatment with bronopol (100 mg/L for 30 min) 
has demonstrated to be effective, killing 50% of theronts and 
100% of protomonts [71]. 

Myxosporeans are endoparasites that either can reside in 
visceral cavities such as the gall bladder, the swim bladder, and 
the urinary tract (celozoic species) or can settle as inter- or 
intracellular parasites in the blood, in muscle, or in connective 
tissue (histozoic species). The myxozoans are included in 
three orders Malacovalvulida, Multivalvulida, and Bivalvulida 
[72]. The main myxozoans that affect to fish specimens are the 
genera Myxobolus, Ceratomyxa, Enteromyxum and Sphaerospora 
(Bivalvulida), genus Kudoa (Multivalvulida), and genus 
Tetracapsuloides (Malacovalvulida) [73,74]. Infected fish do 
not always display clinical signs; in fact, an important number 
of myxosporidian parasites coexist with their asymptomatic 
host without causing obvious damage [75]. Spores typical of 
the genus Kudoa were found in the viscera of gilthead seabream 
cultured in the Red Sea [76], but this parasite causes relatively 
benign infections, one usually limited to a few individuals. 
However, under some particular stress conditions or when 
highly pathogenic species (Ceratomyxa shasta, Myxobolus 
cerebralis, Tetracapsuloides bryosalmonae) are involved, 
virulence is enhanced and expressed. General clinical signs are 
often emaciation, swollen abdomen, and gall bladder full of 
unreleased bile. Most myxozoan infections elicit only moderate 
host reactions at least during the early stages of infection, 
although plasmodia with mature spores can later induce 
considerable inflammation [4]. Enteromyxum leei (formely 
Myxidium leei) and other enteromyxosporidan parasites are one 
of the major disease problems in marine aquaculture, since the 
infection has a chronic course. Affected fish become anorexic 
and emaciated, and eventually die with a typical “knife edge” 
body shape and bloated abdomen, and the extensive necrosis of 
the intestine produces a foul odor. Following the first report and 
description of E. leei in cultured gilthead seabream from Cyprus 
[77], the parasite was found associated with morbidity and 
mortality in Israel [78], Greece [79-81], France [82], Italy [83], 
Spain [84], and Tunez [37]. In gilthead seabream, the infection 

shows variable incidence and severity, possibly indicating a 
genetically based susceptibility to the disease [74], and direct 
transmission [85]. Other myxosporean parasite, Polysporoplasma 
sparis, has occasionally been associated with poor growth and 
chronic mortality, affecting mainly to glomerular capillaries of 
the kidney (glomerular disease) [86]. It was reported in Spain, 
in the Adriatic Sea, and in fish farms all over Greece, with high 
prevalence during the warmest season [81,86-89]. Enterospora 
nucleophila is a microsporidium responsible for an emaciative 
syndrome observed in farmed gilthead seabream. The parasite 
is mainly found in the intestinal mucosa with clinical signs 
including anorexia, cachexia, and pale internal organs [57]. 
Several histopathological damages occur in severe infections and 
this microsporidium is considered a serious emerging threat in 
gilthead seabream production [61]. According to Martins et al. 
[90], three applications of formalin solution (10 mL/m3) for 15 
d were adequate to control the disease caused by the protozoa. 
Cellular effectors (lymphocytes, granulocytes, phagocytes, non-
specific cytotoxic cells, and rodlet cells), and also humoral factors 
(lysozyme, peroxidases, antiproteases, complement, and specific 
antibodies) seem to be the main fish immune components 
involved in the response against myxosporoses [91].

Class Monogenea is comprised of mostly ectoparasites fluxes, 
the most frequently encountered worm in mariculture [92]. 
Flukes either draw or feed off the host tissues, causing irritation, 
hyperplasia, haemorrhage and anaemia. Furnestinia echeneis is 
frequently observed on gilthead seabream in the Mediterranean 
[93], and they are usually presented at the distal extremities of 
the gill lamellae [94,95]. The rates of infestation are very low, 
depending on the temperature [96], and the fish appareared to 
be in good health and no evident symptoms were exhibited [97]. 
Sparicotyle chrysophrii is other common monogenean parasite for 
cultured gilthead seabream [92,94,98], and its haematophagus 
activity produce severe anaemic conditions in the cold seasons 
[97]. Gyrodactylus was found on the fins and body surface of 
gilthead seabream cultured in several Mediterranean regions 
[40,92]. Other monogenoidean parasites detected in gilthead 
seabream are the belonging to the species Encotyllabe vallei, 
Lamellodiscus echeneis, L. ignoratus, and Polylabris tubicirrus [92]. 
A 1-h formalin treatment (150-200 mg/L) or hydrogen peroxide 
(200 mg/L, 30 min) are good methods of treatment. Eggs, 
however, may survive the therapies, so that repeated treatments 
may be required to disrupt these parasites. Neobenedenia melleni 
is very sensitive to freshwater and, a 3-min freshwater dip is 
normally sufficient to free the fish from this infestation, but, 
the eggs may also survive the treatment [40]. Recently, Chagas 
et al. [99], have described that the supplementation of the diet 
with mebendazole controls the monogenean infestations in the 
freshwater fish Colossoma macroporum. 

Class Digenea, such as Monorchis monorchis and Telosentis 
exiquus, comprises endoparasitic platyhelminths that require 
at least one intermediate host to complete their life cycle. In 
S. aurata, the parasite Bucephalus minimus has been found as 
encysted larval or juvenile stages, and as free adults [100], and 
Neobenedenia melleni has been detected on the body of gilthead 
seabream cultured in the Red Sea [101]. Acute infections by the 
cercariae have occasionally been observed due to severe damage 
in the host tissues during penetration and migration because the 
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active feeding of the monogeneans on mucus and on epithelial 
cells leads to hemorrhage, inflammation, and the over-production 
of mucus [102,103]. Parasites often settle on or around the eyes, 
damaging the cornea and causing blindness [103,104]. Once 
encysted, metacercariae do not produce further tissue damage, 
except intense melanization reaction around the cyst. Cardicola 
aurata were reported affected gilthead seabream in Spain, Italy, 
Croatia, and Greece [60,105]. Massive presence of eggs and 
miracidia caused clogging of the gill capillaries and severe local 
tissue damage, while the adult individuals could be found in the 
vessels of the renal parenchyma or in the afferent vessel of single 
gill arches [106,107].

A large number of copepods belonging to the families 
Caligidae and Ergasilidae parasitize the itegument of fish [108]. 
Gill filaments can be severely damaged and skin haemorrhages 
typically occurring in heavily infestations, although copepod 
presence on S. aurata has only rarely been associated with fish 
mortalities [97]. Several treatment agents have been suggested for 
control of copepods, including formaldehyde, organophosphate 
insecticides, hydrogen peroxide, ivermectin, pyrethrum, carbaryl, 
diflubenzuron, to name a few. However, the therapeutic dosage 
may be toxic for the hosts, and other measures, such as exposures 
to freshwater, are applied. Family Cymothoidae constitutes the 
great majority of isopod parasites in fish [109]. These parasitic 
isopods are grossly visible on skin, mouth and gills of the infected 
fish, causing considerable damages [110]. In addition, S. aurata 
is susceptible to the larvae of the Gnathiidae family, of which 
Gnathia piscivora constitutes a potentially dangerous risk [111]. 
The most common isopod affecting gilthead seabream in the 
Mediterranean are Ceratothoa paralella [112] and C. oestroides 
[113,114]. 

Bacterial, viral, and fungi pathologies 

Vibrio spp. has been isolated frequently from diseased 
gilthead seabream in several farms around the Mediterranean 
basin [115]. Mortalities of cultured gilthead seabream were 
associated with V. alginolyticus, V. parahaemolyticus, V. vulnificus, 
V. harveyi, V. ordalii, V. salmonicida, and V. anguillarum [40,116-
121]. Vibriosis is characterized by a systemic hemorrhagic 
septicemia. Lethargy, skin darkening, exophthalmia, anemic gills, 
petechia on the skin and the base of the fins, and inflammation 
and ulcers are the typical external signs. Internally, congested 
visceral blood vessels, intestinal hemorrhages, and accumulation 
of ascitis fluid in the abdominal cavity are the most common signs 
of vibriosis [122,123]. Vibrio spp. produces a wide variety of 
proteases, hemolysins, and other extracellular enzymes that are 
responsible for the extensive tissue damage [124]. In advanced 
cases, congestion and liquefaction of the spleen, liver, and kidney 
can also be observed. Factors such as transport stress, water 
temperature changes, handling, and low oxygen induced vibriosis 
in S. aurata [125]. Treatment of vibriosis with medicated feed can 
be effective if done at the initial stage of the disease, while the fish 
are still eating. Flumequine, oxytetracyclines, sulfonamides (+ 
trimethoprim) and florfenicol are the main antimicrobials used 
for vibriosis treatment. Vaccination as preventive measure is the 
best option since its effectiveness has been demonstrated about 
100% during the protection period using both immersion and 
injection procedures. Oral formulations with good effectiveness 

are strongly required by the industry because could help reducing 
handling and improving welfare, but they are not enough 
developed. Good animal husbandry and adequate nutrition 
are essential to prevent the development of the disease and, 
subsequently, the use of antibiotics. Combination of the suitable 
and available vaccination protocols has a real benefit in cost-
effect balance. The emerging crisis of resistance to antibiotics has 
led to sporadic application of probiotics in S. aurata culture [126], 
in order to develop immunocompetance in fish to combat with 
bacterial diseases and also inhibit the colonization of potential 
pathogens in the digestive tract through competition exclusion 
principle. However, in general probiotics are low immunogenic 
in nature, temperature- and salinity-sensitive and cumbersome 
in application. Phage therapy can be described as the use of 
bacteriophages to control specific pathogenic or problematic 
bacteria. Experimental results with marine animal models have 
demonstrated the efficacy of phage therapy against infectious 
diseases caused by Vibrio harveyi, V. parahaeamolyticus, V. 
anguillarum, and V. alginolyticus [127-130].

Photobacteriosis is provoked by two subspecies of 
Photobacterium damselae, one of them P. damselae sub sp. 
piscicida caused the “pseudotuberculosis” that is recognized as 
granulomatous-like lesions in the spleen and kidney of affected 
fish. This disease develops rapidly into an acute septicemic 
condition characterized by conspicuous splenomegaly, and 
high mortalities have been observed in gilthead seabream from 
Atlantic and Mediterranean areas [118,131-135]. Transmission 
of the pathogenic bacteria can be vertical, through the gonadal 
fluids, as well as horizontal through the water route, by this 
route the bacteria is able to infect its host through the gills, the 
digestive system and the skin [131,136]. The other subspecies 
of P. damselae is P. damselae subsp. damselae (formerly Vibrio 
damsela or Listonella damsela). This microorganism causes 
skin ulcers or systemic disease in a wide range of fish, including 
gilthead seabream [137-140], and can also cause skin ulcers in 
humans [141]. Antibiotics have been the first line of defense in 
fish aquaculture to control photobacteriosis outbreaks, but after 
only a few years the pathogens acquired resistance to various 
antibiotics, such as kanamycin, sulphonamide, tetracycline, 
ampicillin, chloramphenicol, florfenicol, and erythromycin [142]. 
Efforts have been focused on gaining a better understanding of 
the biology of these pathogenic microorganisms with the aim of 
developing effective vaccination strategies to control the disease. 
Conventional vaccinology has thus far yielded unsatisfactory 
results, and recombinant technology has been applied to identify 
new antigen candidates for the development of subunit vaccines 
[142].

Pseudomonas anguilliseptica infections have been described 
in gilthead seabream [143] associated with a hemorrhagic 
septicaemia named “winter syndrome” or “winter disease” 
(WD) [40] in the Mediterranean areas. WD refers to a 
condition exclusively affecting gilthead seabream reared at 
low temperatures. The disease is considered as a multifactorial 
problem brought about by the physiological, metabolic, and 
immunological disturbances associated with the poor tolerance 
of this species to rearing conditions at temperatures below 15ºC 
[144-148]. Although the WD is probably multifactorial with 
unresolved aspects of its etiology, the recurrent isolation of P. 
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anguilliseptica of WD-afeccted fish indicates a significant role of 
this microorganism in the disease [143,149,150]. External signs 
included a moderate abdominal distension and keratitis, anemia, 
lethargy and fish become darker and with the typical stress bands, 
and sometimes petechial haemorrhages on skin [143]. Internally, 
hepatic pallor and severe distension of the intestines are evident; 
usually the diseased fish develop meningoencephalitis. The fish 
mortality of this disease is higher in the second stage (early 
spring at 15-16ºC), where P. anguilliseptica is recorded frequently 
[143,149,150]. Treatment with ciprofloxacin, erythromycin, 
gentamycin, oxytetracycline, tetracycline, streptomycin or 
trimethoprim-sulphamethoxazole gives a good response [151-
153]. Recently, Phumkhachorn & Rattanachaikunsopon [154] 
used a bath treatment with extract of the plant Cassia alata to 
control the P. anguilliseptica infection. There are no commercial 
vaccines available for this disease agent, although several 
experimental vaccines have been tested [151,155,156]. 

Tenacibaculum maritimum [157] is a bacterium commonly 
found in seawater and formerly known as Cytophaga marina 
or Flexibacter marinus or F. maritimus. It is an opportunistic 
pathogen responsible for “flexibacteriosis,” also known as 
“gliding bacterial disease,” “eroded mouth syndrome,” and 
“black patch necrosis.” Flexibacteriosis was described in Europe, 
USA, and Japan affecting mainly to larval or juvenile of a high 
variety of fish species. An increase in water temperature, various 
stressors and skin abrasions may trigger the development of the 
disease. The mouth appears eroded and hemorrhagic, lesions 
may open in the skin, fins and tail appear frayed, and foci of 
gill rot may develop followed rough handling during grading 
and other netting procedures in nurseries [40]. The disease 
can become systemic, involving different internal organs. T. 
maritimum has been described in gilthead seabream associated 
with coinfection with monogenean gill parasites (Sparicotyle 
and Furnestinia) [158,159]. In vitro studies on the susceptibility 
of T. maritimum to various chemotherapeutic agents indicate 
that all bacterial strains isolated from different sources exhibit 
a similar pattern [158], but field results were not always similar 
[160]. The administration of amoxycillin and trimethoprim 
and enrofloxacine are effective antimicrobial therapies against 
this pathogen in field trials [158,161]. An alternative to drugs 
would be the use of surface-acting disinfectants administered 
by immersion, such as formalin, potassium permanganate, and 
hydrogen peroxide [158]. Modifying husbandry parameters 
(temperature and/or salinity, controlling fish densities, reducing 
stress conditions, and avoiding overfeeding) decrease the 
occurrence of tencibaculosis in fish farms [158,162]. To date, 
there is a general agreement that a vaccine would considerably 
help to control tenacibaculosis and several research programs 
have been established [163], although at present, only one 
bacterin is commercially available to prevent turbot mortalities 
caused by T. maritimum, but may not be effective in preventing 
the tenacibaculosis in other fish species [164]. Other vaccine 
developments are under trial experimentations yet [155,165].

Epitheliocystis is an infectious disease caused by the 
obligate intracellular bacteria Chlamydia, and it was described 
in cultured gilthead seabream in Israel [166,167], in Italy [168], 
and in Spain [94,169]. Co-infections with other fish pathogens, 
such as monogeneans, Trichodina and Vibrio spp. have been 

reported by several authors [50,169]. Nevertheless, recently 
similar epitheliocystis disease that affected to gilthead seabream 
specimens was associated with intracellular beta-proteobacteria 
agents, such as Ichthyocystis hellenicum and I. sparus [170]. 
Epthyteliocystis appears to be a seasonal disease in Mediterranean 
farmed gilthead seabream, occurring during the warmer months 
and when juveniles are first introduced into seacages. However, 
epitheliocystis outbreaks have occurred in aquaculture systems 
associated with high stocking densities, presence of nutrients, 
season, temperature and fish age [171]. Since more than one 
organism might be involved in an outbreak and since diagnosis 
can be problematic, there is no established treatment for this 
pathology. Alternative husbandry methods, such as decreasing 
stress factors and increasing water quality, around the time of 
outbreaks times has been recommended [172], together with 
ultraviolet irradiation of water supplies [173]. Antimicrobial 
therapy has been attempted in control of this microbial pathogen, 
using tetracycline and macrolide antimicrobials [174]. However, 
Somridhivej et al. [175], demonstrated that water exchange was 
the most appropriate treatment to treat the disease or mitigate 
the heavy infection. 

Lymphocystis disease (LCD) is a well-known fish viral 
infection provoked by a DNA virus (LCDV) belonging to the 
Iridoviridae family [176], which is characterized by hypertrophy 
of fibroblastic cells in the dermis connective tissue of affected 
fish, occasionally proliferating as true epithelial tumours [177]. 
This viral disease affects a wide variety of fish species, including 
S. aurata. Paperna et al. [178], reported for the first time the 
occurrence of LCD in gilthead seabream reared in the red Sea, 
but imported as fingerlings from Mediterranean Sea. Later, this 
viral disease was disseminated to several aquaculture nurseries 
around Mediterranean basin, where the virus probably become 
endemic, including Italy, Spain, Greece, Turkey, France, and 
Portugal [179-186]. Although this disease is rarely fatal, fish 
showing the characteristic symptoms cannot be commercialized, 
causing important economic losses [179]. The main characteristic 
of LCD is the appearance of small cream-coloured nodular lesions 
on the fish skin and fins [187,188]. Each nodule consists of an 
LCDV-infected cell, named lymphocyst or lymphocystis cell, of 
up to 1 mm in diameter [178]. These hypertrophied cells may 
occur singly or grouped in raspberry-like clusters of tumour 
appearance. These cellular aggregates are usually whitish in 
colour, and in heavily affected fish, lymphocysts may cover the 
entire body, spreading from the gills to the fins [178,182,189,190]. 
Less frequently, they have also been described on eyes, causing 
exophthalmia, and internally over the mesenteries, peritoneum 
and several internal organs [187,190,191]. LCD is a chronic and 
self-limiting disease that, depending on the host fish species 
and environmental conditions, may persist for a variable period 
of time [192]. Thus, the LCD-associated lesions may be evident 
for 1 year in cold-water fish, whereas they disappear after 
several weeks in warm-water species [178,193]. There is no 
effective therapy for LCD; reduction in stocking density and the 
removal of heavily infected individuals are the only measures 
that can be adopted to reduce the impact of this disease [194]. 
The maintaining LCDV-free populations should be prioritizied 
for sustainable aquaculture in endemic areas [195]. Vaccine 
against LCDV has focused on the development of a recombinant 
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plasmid DNA vaccine with a fragment of the major capsid 
protein into an expression vector [196], the plasmid is expressed 
in fish and induced a specific immune response [197-199]. 
Another experimental vaccine using encapsulated microspheres 
loaded with pDNA coded for LCDV showed efficacy after oral 
administration [200]. 

The Viral Nervous Necrosis (VNN) or Viral Encephalopathy 
and Retinopathy (VER) is a viral fish disease provoked by 
the Nervous Necrosis Virus (NNV) belonging to the family 
Betanodaviridae. Pathogenesis of VER is related to the neuro-
invasive nature of the virus and its deleterious effect on 
tissues in the brain and retina. Clinically, VER is characterized 
by nervous symptoms, such as impaired coordination, loss 
of balance, whirling swimming, blindness with consequent 
changes in pigmentation, swim-bladder hyperinflation, and 
hyperexcitability in response to noise and light. Other general 
signs are lack of appetite, lethargy, and anemia. Mortality may 
reach 100%, in particular in larval and juvenile stages, within 1 
week from the onset of the neurological symptoms, depending 
also on the viral genotype. Chronic, asymptomatic infection of 
VER is also frequent in older individuals, and it is transmitted 
both vertically and horizontally routes. NNV has been detected 
from gilthead seabream farmed in Greece, France and Spain, 
[140,201-205]. Although, S aurata harbours the virus and acts 
as an asymptomatic carrier [206], recently it has described the 
disease affects to this fish species [207,208]. No chemotherapy 
is available for VER, therefore control depends upon husbandry 
practices that prevent contact between naïve and infected fish 
within farms and also between different geographical areas. 
Ozone has been used to avoid or reduce virus contamination 
on egg shell surface [209], and virus contaminated water may 
be effectively sterilised by UV exposure [210]. Different studies 
have shown that immunisation using recombinant viral coat 
protein expressed in E. coli or virus-like particles expressed in 
a baculovirus expression system or formalin-inactivated virus 
may be effective in controlling the disease [211-213]. Yamashita 
et al. [214], showed that primary infection with an avirulent 
aquabirnavirus effectively suppressed secondary betanodavirus 
infection, suggesting the use of the aquabirnavirus as a potential 
immunomodulator. Recently, several DNA-based vaccines have 
been developed against NNV [215,216].

Only a few fungic infections have been reported affecting S. 
aurata farmed in Mediterranean basin [217-219]. Ichthyophonus 
spp. causes ulcers and granulomatous lesions in internal 
organs. Lesions are most common in highly vascularized organs 
(spleen, kidney, heart, and liver), and the infection to have a 
chronic course, and prevalence seems to increase with host age 
[220,221]. The potential infection from wild fish species should 
not be underestimated since any effective treatment has been 
devised so far [221]. Abdel-Latif et al. [222], reported that the 
most prevalent fungi detected in cultured S. aurata in Egypt were 
species of Aspergillus, Cladosporium, and Fusarium.

FUTURE PERSPECTIVES	
Diseases have proved major constraints to efficient 

production in intensive culture of gilthead seabream in 
Mediterranean areas. Major improvements in the understanding 
of the aetiology and epidemiology of this fish species pathologies 

have been achieved in recent years; and, therefore, fish farmers in 
several Mediterranean countries have significativelly improved 
their husbandry practices with greater focus now on fish welfare. 
Control of many serious infectious diseases has been achieved 
through new chemicals and vaccines, and this is especially 
true for bacterial diseases. However, new pathologic problems 
are emerging, and previously rare diseases becoming much 
more prevalent; therefore, continued vigilance and solution 
development is required.

Due to the complex set of interactions that facilitate the spread 
of disease, multi-level interventions are necessary. Farm-level 
disease interventions, such as timely diagnosis and treatment, 
could address the host-pathogen relationship, while improved 
farm management may address environment-pathogen and 
environment-host issues. To address disease transmission 
between farms, regional and national policies, surveillance, 
reporting, training, and emergency response capabilities are also 
needed.

Developing and promoting production methods that reduce or 
eliminate the need for antibiotics, pesticides, and other chemicals, 
which can have wide-ranging impacts on human, fish, and 
environmental homeostasis is a need for a sustainable practice 
of aquaculture. For this, viral vaccines, based on the recombinant 
DNA technology and subsequently direct DNA vaccination, 
appear to be very promising. As this involves a transfer of genes, 
there are significant issues of safety and consumer acceptance to 
be addressed. Another approach showing promise is the use of 
proteomics and epitope mapping for the identification of vaccine 
antigens and the subsequent development of peptide vaccines, 
which might be appropriate against parasitic diseases. Further 
methods include the use of virus-like particles or recombinant 
viral proteins produced in yeast will potentially be use to 
pathogen control.

New therapies using genomic tools appear to be promised, 
for example using dsRNA for disease protection and RNA-i-based 
gene therapies. Antimicrobial peptides are also being studied as a 
potential therapeutant. Aquaculture diets are also under scrutiny 
with respect to potential for delivery of immunostimulants and 
better understanding of interactions between gut microbiota, 
pathogens and micronutrients, including probiotic effects.

In short, this review has shown that there is a substantial 
scientific and empirical base for the implementation of Integrated 
Pathogens Management Strategies (IPMS) in S. aurata farming, 
and that nowadays integration of all the available preventive and 
treatment strategies is indispensable to fighting the diseases of 
this fish species.
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