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Abstract

A large proportion of people suffering from Alzheimer’s disease (AD) worldwide are not receiving 
a timely diagnosis. The tools currently used to detect AD and monitor its progression are not sensitive to 
the preclinical stages and lack specificity for correct diagnosis. Available biomarkers show acceptable 
levels of sensitivity but remain little specific and not accessible to everyone.  We embrace the view that 
enhancing cognitive assessment of AD should be a research priority. This Perspective paper focuses 
on issues which, to our view, have been preventing cognitive tests from meeting outstanding needs 
in the early of detection, monitoring, and treatment development of AD dementia. We first outline 
the limitations of current diagnostic procedures both theoretically and practically. We then provide 
a rationale for theory-driven cognitive approaches which would allow mapping assessment tools to 
specific neuropathological stages of the neurodegenerative course of AD. Finally, we propose research 
strategies that would help test a hypothesis which, though launched five years ago, remains untested. 
That is: “Which memory system is impaired first in Alzheimer’s disease?” 

ABBREVIATIONS
AD: Alzheimer’s Disease; CT: Computed Tomography; DLB: 

Dementia with Lewy Bodies; EEG: Electroencephalogram; 
ERP: Event-Related Potentials; Fmri: Functional Magnetic 
Resonance Imaging; FTD: Frontotemporal Dementia; ICOM: 
International Conference of Memory; MCI: Mild Cognitive 
Impairment; MRI: Magnetic Resonance Imaging; PD: Parkinson’s 
Disease; PET: Positron Emission Tomography; SCD: Subjective 
Cognitive Deficits; Vasd: Vascular Dementia; VBM: Voxel-Based 
Morphometry; VSTMB: Visual Short-Term Memory Binding

INTRODUCTION
Of the 46.8 million people suffering from dementia worldwide, 

only 20-50% are recognized and documented in primary care. 
This gap is certainly much greater in low and middle income 

countries, with some countries reporting that 90% of sufferers 
remain unidentified. There is consensus that a large proportion 
of people suffering from dementia worldwide are not receiving 
a timely diagnosis, and thus have no access to treatment options 
or care. What factors drive the under diagnosis of dementia? 
What could researchers from cognitive neurosciences provide 
to tackle this global challenge? This paper first focuses on some 
bottlenecks of current diagnostic procedures and then discusses 
some approaches which may help improve the detection of AD 
and monitor its progression. 

The pitfalls of current diagnostic tools for AD

As awareness about the initial symptoms of AD has grown 
dramatically over the last few years, people are approaching 
health services earlier. This is enabling the detection of cognitive 
impairments from the very early stages which could still be 
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subjective (i.e., Subjective Cognitive Deficits - SCD [1]) or shortly 
after entering the objective stages (i.e., Mild Cognitive Impairment 
- MCI [2]). Although encouraging relative to past diagnostic 
achievements, recent evidence suggests that these may already 
be quite late stages in the disease process [1,3,4]. Furthermore, 
receiving a diagnosis of MCI is providing more problematic than 
helpful at present as [1], it does not grant certainty about risk 
of future dementia, [2] does not lead to specific therapeutic 
strategies, and [3], creates tension and discrepancies within 
the clinical and scientific community regarding diagnostic 
approaches, research targets, and therapeutic pathways. To 
alleviate this tension and overcome some of these barriers 
a new generation of biomarkers for AD has been developed. 
Nevertheless, they too experience several limitations [5], which 
we address in the next section.

Limitations of current biomarkers of AD: AD is associated 
with severe brain atrophy which can be detected using structural 
imaging techniques (CT, MRI) (e.g. see [6] ). Whilst shrinkage of 
some brain regions, such as the hippocampus, are thought to be 
an early signature of AD, standardized values for brain volumes 
associated with AD that can be measured at a single time point do 
not exist. Functional imaging techniques (PET, fMRI) often detect 
reduced brain cell activity (oxygen, glucose uptake is reduced) 
in patients with AD [7,8]. Nevertheless, neither regional atrophy 
nor reductions in glucose metabolism are specific to AD [9]. 
Molecular imaging technologies, using radiotracers targeting the 
deposit of beta-amyloid and astrocytosis have shown promising 
results [10,11]. So have tau and beta-amyloid quantification 
in cerebrospinal fluid [9]. Amyloid plagues in the brain are 
a characteristic of AD but also of people with no evidence of 
cognitive decline, making these biomarkers unreliable for 
diagnostic purposes [12,13]. Moreover, there is an ongoing 
debate as to whether amyloid or tau pathology is the key driver 
of AD dementia [14-16]. With the molecular mechanisms of AD 
pathology still unclear, it remains very challenging to develop 
effective research strategies towards biomarker development 
and pharmacological targets. 

In addition to these theoretical limitations, biomarkers 
also hold practical limitations. They are invasive and expensive 
procedures which are only available in secondary care or 
specialized centers. Moreover, given the high number of expected 
patients with AD in the future, the regular use of such techniques 
as diagnostic tools would be untenable [5]. Biological evidence 
could be gathered using affordable methodologies such as the 
EEG (e.g., event related potentials (ERP) and brain connectivity 
analysis). ERP abnormalities associated with AD have been 
observed using several paradigms (e.g., Odd-ball: P300, Semantic 
categorization: N400/P600). Such ERP patterns have also 
been associated with typical aging, depression and other age-
related disorders making them sensitive but not specific to AD 
(for review see [17] ). A recent study indicates that combining 
cognitive tests which holds maker properties for AD with EEG 
techniques could help overcome these limitations [18]. The 
priority is to identify tests of cognitive function which hold such 
properties. We address this issue next. 

Limitations of current cognitive markers of AD: Diagnosis 
and progression of AD are usually based on performance on 

batteries of cognitive tests assessing memory, reasoning, 
language, attention, etc. While these tests are sensitive to AD, 
they cannot distinguish AD from other disorders with similar 
cognitive symptoms (e.g. cognitive aging, depression or other 
types of dementia) [5]. Most of these tests show improvement on 
repeated testing, thus masking decline or response to treatment 
in progressive disorders such as AD [5]. With the advent of 
preventive initiatives the diagnostic goals have shifted towards 
the preclinical or subtle symptomatic stages. Most of the tests 
traditionally used to support the diagnosis of AD and monitor 
its progression fail at these stages of the disease. To overcome 
such a limitation composite scores have been introduced 
[19,20]. Composite scores encapsulate several cognitive abilities 
which show different sensitivity trajectories to a wide range of 
neuropsychiatric disorders. Hence, composite scores may boost 
sensitivity but will dramatically reduce specificity. It is our limited 
understanding of the links between the pathophysiological 
mechanisms of the disease and their clinical expression what 
drives this conundrum. We explore this issue briefly in the 
following section. 

Need for theory-driven markers of AD: Hippocampal-
related memory decline is one of the earliest symptoms referred 
by patients with AD. This long standing view has driven the 
development of cognitive and neuroimaging markers for AD 
over the last few decades [3,21]. More specific, regions within 
the anterior sub-hippocampal areas (i.e. the entorhinal and 
perirhinal cortex) are affected by AD prior to the hippocampus 
[22]. MRI-derived volume measures of the entorhinal cortex were 
better predictors of conversion from MCI to AD than hippocampal 
volumes were [23,26]. The preclinical phase of AD has been 
characterized with the presence of neurofibrillary tangles in the 
trans-entorhinal region [24]. However, to date, it has remained 
unclear how these different structures of the Medial Temporal 
Lobe (MTL) contribute to memory. Studies of patients with 
selective brain damage to these structures show that the anterior 
sub-hippocampal areas support context-free memory like facts 
based on familiarly judgements where as context-rich memory 
such events based on recollection rely on the hippocampus 
[22]. This made Didic and colleagues hypothesise that impaired 
context-free, object based, memory might be the first detectable 
sign in AD [22]. If we consider that such regions are affected by 
AD earlier than the hippocampus [14,27] and that we now have 
the possibility to develop tests which can tax their functions, 
early cognitive markers for AD should therefore focus on the 
anterior sub-hippocampal regions and their clinical expression 
[25]. Context-free memory tasks might not be as sensitive to 
normal aging as cognitive tests currently used for the diagnosis of 
AD (e.g., associative learning tests; [5,28,29]. Recent studies have 
started to shed some light on novel memory tasks which seem to 
meet these and other criteria for a good test for AD.

Good markers to diagnose and monitor AD: Ideally, 
cognitive markers for AD should (a) be sensitive and specific to 
AD, (b) not show improvement due to practice effects, (c) not be 
sensitive to the education or cultural background of the assessed 
individual, (d) be easy to administer and interpret with minimal 
training, (e) easily accessible and inexpensive. Importantly, 
they should be (f) theory driven allowing for the alignment of 
cognitive constructs and the course of AD pathology [5]. The 
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selection of such markers should not be predefined but based 
on clinical stages as defined by the new lexicon [30,31]. That 
is, some tests can be useful for screening in pre-symptomatic 
populations while others might help detect degree of impairment, 
progression, and response to treatment. To date available tests 
of cognitive function have been indistinctively used to serve all 
these purposes. This could explain why such tests have lagged 
behind other molecular markers for AD with regard to their 
sensitivity [32]. 

Promising diagnostic tools for the pre-symptomatic 
stage of AD: Deficits resulting from damage to sub-hippocampal 
regions may cause symptoms which could be too subtle to be 
noticed by affected individuals or to cause concern (e.g., lack of 
familiarity with a face or a place previously experienced, ability 
to discriminate between two objects’ identity). These low level 
functions provide the building blocks of memory. Memory tests 
for AD have traditionally assessed higher level memory functions 
such as those responsible for integrating low level information 
(e.g., object-based) into complex representations (i.e., episodic 
memories). Deficits of such functions are noticeable and not 
only cause concern but also interfere with everyday life tasks. 
We have now learned more about the link between low level 
memory functions and their neural correlates within the MTL. 
What we need to improve is our understanding of the links 
between AD pathology and such subtle memory impairments. 
Cognitive markers taxing the low-level memory functions of 
the sub-hippocampal regions may offer sensitive diagnostic 
tools for the detection of AD before manifest clinical symptoms 
occur. Performance on context-free tasks such as recognition 
of words have shown to be impaired in patients in the pre-
symptomatic stages of AD [33]. Sub-hippocampal regions such 
as the perirhinal cortex also seem to support temporary binding 
of intra-item associations such as combinations of colour and 
shapes [34]. These types of visual memory binding deficits (i.e. 
impairments to temporary bind colour and shape together) have 
been observed in prodromal stages of sporadic and familial AD 
[18,35]. 

Testing Didic et al.’s hypothesis: The recently developed 
visual short-term memory binding (VSTMB) task has proved 
informative throughout the continuum of AD [31,35,36]. The 
VSTMB test can distinguish between healthy aged individuals 
and AD patients [37], AD patients and those with major 
depression [38], and between AD and non-AD dementias 
(i.e., FTD, PD, VasD, DLB) [39]. Furthermore, it can detect 
impairments in asymptomatic carriers of the E280A presenilin-1 
gene mutation [35,40], more than 10 years prior to the onset 
of dementia. Of note, VSTMB impairments in in asymptomatic 
mutation carriers were observed in the absence of evidence of 
hippocampal dysfunction [35,40]. VSTMB can be carried out 
with a damaged hippocampus [41,42], appears affected in the 
preclinical stages of AD when tests of hippocampal functions are 
performed perfectly well [35,40], and does not elicit activation of 
the hippocampus when performed by healthy younger subjects 
[43]. Hence the VSTMB test is an example of the tasks that can 
inform about the sub-hippocampal stages of AD [22]. Parra et 
al., [43] observed that there is a posterior network that involves 
parietal and occipito-temporal regions supporting VSTMB. The 
absence of MTL involvement during VSTMB could be largely due 

to methodological limitations of fMRI. We need to better map 
the intrinsic structure of the MTL to ascertain such involvement 
or lack thereof. Recently, Parra et al., (paper presented in 
ICOM 2016) used Voxel Based Morphometry (VBM) analysis 
to investigate the neural correlates of memory binding deficits 
(relational and conjunctive) in patients with MCI. They found that 
associative memory functions in the verbal domain relied on an 
extended network which involves the hippocampus and insular 
gyrus. Atrophy of these regions accounted for discrepancies in 
performance between patients and controls. In contrast, poor 
performance of MCI patients on the VSTMB task (a task assessing 
memory functions in the visual domain) were only accounted for 
by atrophy of visual association areas found to be relevant in a 
previous fMRI study [43]. Although no direct involvement of MTL 
regions have yet been found during VSTMB, the involvement of 
areas along the ventral visual stream which are known to feed 
extra-hippocampal regions such as the entorhinal and perirhinal 
cortex [44], has been confirmed by two studies. The network 
supporting VSTMB is more focal than that needed to form 
associative representations [45]. This could explain why test of 
associative memory functions are sensitive but not specific to AD 
as they may be failed by patients suffering from a wider range of 
brain diseases.

Promising monitoring tools during the symptomatic 
stages of AD (phase from MCI to AD conversion): Based on 
Didic et al.[22], the sub-hippocampal stage progresses towards 
the hippocampal stages of AD. This stage is characterized by 
impaired context-free and context-rich (episodic) memory and 
seems to correspond to stage III or IV of the Braak’s scale [14]. 
At this stage patients show autobiographical and topographical 
memory loss which cause concern and therefore prompt them to 
seek help advice. The diagnosis of MCI commonly follows. Hence, 
MCI is the earliest stage of AD that available tests of episodic 
memory can identify [46,47]. Hippocampal-derived impairments 
are responsible for cognitive decline which alters everyday life 
functioning (e.g., being unable to remember where you left the 
car keys or where the car was parked) [48]. Context-rich tasks 
could therefore provide valuable information about effectiveness 
of medication or treatments during the symptomatic stage of AD. 
For a recent review of promising context rich tasks see Rentz and 
colleagues [31]. Besides these promising novel tasks, assessment 
of other cognitive functions (e.g. memory, reasoning, executive 
function - for overview see Logie and colleagues [5]) remains 
useful to monitor cognitive decline in individuals diagnosed with 
MCI as well as to interpret functional decline. 

From theory-driven assessment to theory-driven 
interventions: With the advent of prevention initiative for AD, 
cognitive makers which meet the needs discussed above are of 
upmost priority. However, to date, no effective pharmacological 
treatments for patients with MCI or dementia have been identified. 
Previous pharmacological trials have only shown sub threshold 
effects on behavior, cognition and function [49]. The extent 
to which these null findings are the result of ineffective drugs, 
poor outcome measures (e.g., cognitive scores), or inconsistency 
in rating procedures is not fully understood. There is a general 
consensus that improvement of cognitive scoring and rating 
procedures are required. Good tests of cognitive function cannot 
only inform pharmacological treatments but also provide theory 
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to develop non-pharmacological interventions. Some studies 
have shown that cognitive interventions can have a positive 
effect on patients with MCI [50-53]. A new line of investigation 
is focusing on the development virtual reality (VR) applications 
[54-56]. The high ecological validity of VR technologies make 
VR a promising tool for both neuropsychological assessment 
and intervention [57-61]. Several studies have ascertained the 
efficiency of VR supporting both patients in the early stages of 
dementia and their family by giving educational support and 
memory assistance [62-65]. To date, several research studies 
have addressed specific aspects of cognitive impairments in AD 
using VR. A good summary of the relevant studies have been 
described in the mini-review by García-Betances et al. [55]. 
The authors reported VR benefits for every cognitive function 
investigated (e.g. attention, memory, and executive functions). At 
the same time, VR seems to be a valid tool for memory training in 
subjects with MCI [65-67]. 

CONCLUSIONS
This critical appraisal of the context wherein AD research 

currently delves into a prioritized set of needs leads us to present 
some recommendations which may be considered by future 
research strategies.

1.	 A new research pathway to map effective tests of 
cognitive function to progression of neuropathology in 
AD following the new lexicon.

2.	 Refining knowledge about the fine-grained functional and 
anatomical structure of the MTL and its vulnerability to 
AD-related amyloid and tau pathology.

3.	 Identifying suitable theory-driven memory tests to screen 
for, support the diagnosis, and monitor the progression of 
AD dementia.

4.	 Development of theory-driven cognitive interventions to 
aid the frail elderly and support those transiting through 
the continuum of AD.
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