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Abstract

Cumulative evidence shows that innate immunity participates in the pathogenesis 
of Alzheimer´s disease. This implies that activation of microglia by the so called 
“damaged signals” triggers a cascade of pathological molecular events thus leading 
to hyperphosphorylation and oligomerization of the tau protein in the brain, which 
is associated with cognitive impairment and loss of memory. However, from the 
pathophysiological point of view, Alzheimer´s disease is significantly more complex in 
inducing the loss of memory. As initial events in the pathogenesis of this neurodegenerative 
disease, alterations in the dopaminergic pathway together with serotonin depletion in 
the elderly lead to late onset depressive phenomena according with recent evidences. 
These events seem to occur prior to neuroimmunomodulatory alterations that lead to a 
final oligomerization of tau protein in the course of neurofibrillary tangles formation. 
It is critical to analyze both affective disorders and mood changes with the cognitive 
impairment in the context of Alzheimer´s disease.

INTRODUCTION
Neurodegenerative disorders including Alzheimer´s disease 

(AD), constitute a major puzzle to medicine and society when 
considering their progressive incidence and impact in public 
health, and the slow progress in searching for diagnosis and 
therapeutic approaches [1]. Fortunately, significant advances 
have been achieved about their pathogenesis and the alterations 
in the signaling pathways involved in communication between 
glial and neuronal cells in the brain [2,3]. Important information 
exists on the storage of cognitive information, processes 
underlying human cognition and acquisition of memory. In AD, 
for example, the neuroimmunomodulation theory largely explain 
the sequence of events derived from innate immunities that lead 
to tau oligomerization and formation of paired helical filaments 
and tangles [2]. 

However, Alzheimer’s pathology involves changes not 
only in memory but also emotional events such as empathy, 
mood, humor, which appear to integrate well with cognitive 
processes [4]. In this context, experimental evidence supports 
the existence of molecular/cellular alterations in sophisticated 
pathways of molecular connectivity between the dopaminergic 
cortex and dopamine release with the functional organization 

of the hippocampus [5]. On the basis of these reports and the 
multifactorial origin of AD, we hypothesize that behavioral 
disorders is an important step of the early pathological 
alterations associated with the symptoms of AD. Here, we briefly 
reviewed the structural and cellular basis for the functional 
connections between emotional and cognitive phenomena and 
their pathological alterations in AD.

ALZHEIMER´S DISEASE AND MOOD DISORDERS
AD has been associated with loss of memory, which is 

regarded as a main feature and trait of the disorder. However, 
such non-cognitive symptoms as anxiety, apathy, psychosis, 
depression appear to be involved in the AD. These disorders 
negatively affect the life quality of patients and caregivers [4-6]. 
Moreover, neuropsychiatric symptoms can be present in 80% of 
AD patients, and the depression is the most frequent alteration 
among them, with a prevalence of 50% of cases [7]. Controversial 
evidence, due to the diversity of the design of the studies and 
the difficulty for distinguish between AD and depression, does 
not allow a consensus to ascertain if the depression is just a risk 
factor, and an early event in AD progression [8,9]. In fact, studies 
show a higher presence of neurofibrillary tangles (NFTs) and 
senile plaques (SP) in the hippocampus of AD patients with a 
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history of major depression, compared with AD patients without 
a depressive background. Besides, there is an increase in NFTs 
and SP of post mortem AD brains that present comorbidity with 
depression, as compared with those without the neuropsychiatric 
component [10,11]. 

On the other hand, patients suffering from depression have 
showed hippocampal atrophy [12]. In this context, late stage of 
depression and AD share mutual genetic factors, including the 
involvement of BDNF, ApoE, IL-1, and methylenetetrahydrofolate 
reductase (MTHFR), while inflammatory pathways are activated 
in both disorders [13,14]. Depressive episodes are influenced by 
dopamine and reduction of serotonin in brain, while AD has been 
associated with loss of serotonergic neurons and a reduction in 
the levels of 5-hydrotryptamine (5-HT) of post mortem brains 
with this disease [15,16]. As it was suggested by Butzlaff and 
Ponimaskin [17], serotonin receptors 5-HT4R, 5-HT6R and 
5-HT7R, could modulate the activity of two essential proteins 
in tau phosphorylation: GSK-3β and CDK5 respectively, which 
could lead to NFT formation, triggering microgial activation 
according with the neuroimmunomodulation theory [2,18,19]. 
Furthermore, Yun et al. [20], showed that an antagonist of 
5-HT6R is capable of rescue memory deficit and attenuate the 
expression levels of astrocytes and microglia in an AD mouse 
model, sustaining the role of serotonin in degeneration and 
microglial activation. Concomitantly, dopamine production 
is deeply reduced in brains of AD, as well as the levels of its 
receptors [21]. In addition, it has been recently determined that 
the loss of dopamine affects memory dysfunction in a transgenic 
mouse of AD [22]. Because AD has a multifactorial pathogenesis, 
we hypothesize that depression is an important step of the early 
pathological alterations which are associated with the symptoms 
in AD. In a healthy brain, dopamine is continuously released to 
the hippocampus, which connects mood feelings with cognitive 
processes [23,24]. In AD, a decrease in the dopaminergic levels 
plus a serotonin diminution would trigger depression which is 
regarded as a prodromal symptom of AD. In this context, the 
alterations generated by late onset of depression appears to have 
an impact on the hippocampus, thus inducing the inflammatory 
events, activating microglial cells that trigger overproduction 
of pro-inflammatory factors, as described in earlier time about 
the conceptual scheme of our neuroimmunomodulation theory 
[2,3,18].

CROSS-TALKS BETWEEN THE DOPAMINERGIC 
CORTEX AND THE HIPPOCAMPAL NEURONS

As mentioned about the links between the release of dopamine 
in the dopamine areas and the neurons from the hippocampus, 
both brain areas appear to be functionally interconnected. Within 
a mind-brain perspective, this means a bridge between the brain 
substrate for emotions and the substrate for rational processes. 
Recent studies pointed toward deep brain stimulation (DBS) in 
the medial forebrain bundle, which is associated with the reward 
system, in order to promote an improvement in a depressive-like 
rat model. They were capable to obtain not only an anti-depression 
response but also an increase of dopamine D2 receptors and 
dopamine transporters, in the areas of the hippocampus and 
the pre-frontal cortex [25]. These findings suggest a functional 

mechanism of the dopaminergic system in behavioral disorders 
of the hippocampal area, which is the primary structure affected 
by the neuroinflammatory mechanisms triggered by “damage 
signals” in AD, in agreement with the neuroimmune modulation 
theory [2,3]. The frontal cortex is also reported as a zone affected 
in cognition disorders. In this region, the blockade of D3 dopamine 
receptors has been associated with pro-cognitive activity in 
rodents and primate models and proposed as a possible therapy 
for AD [5,26,27]. In the meantime, it seems that improvement 
in cognition processes is related to cAMP/PKA/CREB signaling 
in the hippocampus, which also presents D3 receptors [28-32]. 
In fact, knockout mice for D3 receptor present an improved 
spatial memory and an increased CREB phosphorylation in 
the hippocampus, suggesting an enhancement in memory 
consolidation [33]. Other brain regions which constitutively 
express D3 receptors, seem to regulate memory processes, 
attention, emotions, motivation and reward. Neurons projecting 
their neurites from the nucleus accumbens (NAc) are enriched in 
D3 receptors and are innervated by dopaminergic neurons from 
the ventral tegmental area (VTA), which in turn, also receive 
NAc projections. Moreover, NAc processes reach the entorhinal 
and PFC and, receive projections from the cortex, hippocampus 
and the amygdala [34]. In other AD models, dopamine has been 
a target for the enhancement of memory tasks and the control 
of the associated cognitive impairment. In 2012, Guzman-Ramos 
and their collaborators [35] performed the microdialysis of 
dopamine reuptake blocker in cortical and hippocampal regions 
of a triple transgenic mouse model of AD (3xTg-AD). Moreover, 
cortical release of this neurotransmitter specifically in the 
insular cortex was able to attenuate the memory and cognitive 
impairment [35]. Furthermore, a recent study indicated that the 
gradual loss of dopaminergic neurons in an AD mouse model 
(Tg2576) characterized by memory and reward dysfunction [26]. 
It is known that dopamine D1 and D2 receptors are expressed in 
specific hippocampal areas, suggesting their role together with 
acetylcholine in memory processes [36,37]. More interesting 
D2 receptor antagonists have been proved as neuroprotective 
agents against tau toxicity and its aggregation [38] (Figure 1). 

These observations seem to be connected with a series of 
evidence linking electric and magnetic induction in some regions 
of the brain, not only with the emergence of a minimal stages of 
consciousness or vegetative state but also with differential levels 
of serotonin and dopamine agents [39-42]. Previous reports have 
linked the dopaminergic system with brain damage and cognitive 
disorders [43-45].

DOPAMINERGIC SYSTEM IN BEHAVIORAL 
DISORDERS AND AD

According with the ideas outlined in the precedent paragraphs, 
an important cross- talk exists between the dopaminergic 
pathway involved in mood activities and neurons from the 
hippocampal domain and entorhinal cortex. Research shows 
that behavioral and mood disorders have been associated with 
AD phenotypes. In 1993, Rohling and Scogin [46] reported the 
correlative effect between depression and memory deficiencies. 
Today, we know that there are many reports with data related to 
the same phenotypes, giving us insights on the possible effects 
of the early AD event in behavioral or mood disorder conditions 
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Figure 1 Schematic representation of concerted action of dopaminergic/serotonergic decrease-neuroinflammation hypothesis on 
Alzheimer´s pathogenesis. Molecular and cellular events occurring at the dopaminergic area and dorsal raphe nucleus, linked with behavioral and 
mood alterations results in dopamine/serotonergic reduction. This event appears to activate the neuroinflammatory cascade at the hippocampal 
level, by stimulating microglial cells and as a consequence, promoting the release of pro-inflammatory factors that in turn activate protein kinases 
such as CDK5, tau phosphorylation, oligomerization into paired helical filaments and neuronal death. This may explain that late depression involving 
decrease in dopamine and serotonin decrease occur as early events, prior to deregulation of microglia-neuronal cells cross talks and activation of 
the neuroinflammatory cascade.

[47]. Since we have linked the hippocampal deterioration with 
a compromised behavioral state and mood disorders, it is 
interesting to pay attention to the evidence of the involvement of 
the glutamate system. Recent research has suggested ketamine, 
as a glutamatergic promoter, aimed to improve depressive or 
bipolar conditions [48].

Altogether, these reports suggest the importance of several 
neurotransmitters related to the interest regions in AD, indicating 
a paramount cross-talking between these neurotransmitters and 

functions such as memory, behavioral and cognition affections. 
It has already been shown that the progress of AD associated 
with neuronal death processes are preceded by pathological 
tau aggregation [2]. Therefore, the greatest interest from the 
therapeutic point of view is to search for compounds being 
capable of interfering with abnormal tau aggregation, as well 
as compounds that have a neuroprotective capacity, in order 
to ameliorate the degree of injury and prevent continuous 
cell damage. These studies on the connectivity between the 
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dopaminergic pathway and the hippocampal area will be critical 
in the search for therapeutic solutions for AD.
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