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Abstract

Proteins and their complexes undergo conformational changes, which are closely 
related to their unique biological functions. However, it is of great challenge for both 
theoretical and experimental studies to resolve the protein conformational changes 
due to the limitations regarding the time scale, data size and computational cost. In 
recent years, normal mode analysis based on coarse-grained elastic network model 
has been proven to be suitable for the study of the collective vibration motions in 
macromolecules. Based on the topology of native contacts, this coarse-grained analysis 
can provide the global motions effectively, thus getting insights into the mechanical 
aspects of proteins dynamics. In this short review, the basic theory and fundamental 
features of elastic network models are introduced and a wide variety of examples and 
applications are then discussed.

ABBREVIATIONS
ENM: Elastic Network Model; NMA: Normal Mode Analysis; 

MD: Molecular Dynamics; NMR: Nuclear Magnetic Resonance; CG: 
Coarse-Grained; ANM: Anisotropic Network Model; MWCENM: 
Mass-Weighted Chemical Elastic Network Model; MWC: Monod-
Wyman-Changeux; NMFF: Normal Mode Flexible Fitting; EM: 
Electron Microscopy; ENI: Elastic Network Interpolation; PNM: 
Plastic Network Model; AK: Adenylate Kinase; HENM: Hybrid 
Elastic Network Model.

INTRODUCTION
In the last several decades, more than 90,000 macromolecules 

structures have been revealed according to the great development 
in biological experiments [1]. Based on these three dimensional 
structures, macromolecules perform various functions such as 
catalysis [2,3], regulation [4-6], transport [7], ligand binding [8,9], 
and so on. Since the relationship between molecular structure 
and its function is tightly involved with conformational change 
[10,11], several experimental and computational methods have 
been evolved in this field [12-16]. However, the experimental 
methods undergo the difficulty in direct observation of 
protein motions [17]. The nuclear magnetic resonance (NMR) 
spectroscopy is usually used to determine both the statics and 
dynamics of protein, but it is limited on the size of protein and 
also has difficulty in discrimination of fast and slow diffusion 
[12]. In addition, single-molecule FRET experiment is usually 
insufficient to completely define the conformational change with 
low resolution [16]. Overall, such direct experimental methods 
including mass spectrometry with hydrogen/deuterium 
exchange and single-molecule experiments using optical trapping 

still are not enough to reveal protein dynamics in atomic detail. 
As an alternative, simulations could potentially fill in some of 
the details [14]. Molecular dynamics (MD) simulation, based on 
solving the Newton’s equations of motion and getting the time-
dependent behaviors of proteins, is one of the most representative 
computational tools utilized to understand protein motions at 
atomic level [18,19]. Even though MD simulation has become 
more accurate enough to explain and predict experiment results, 
standard all-atom MD simulation with transferable force fields 
is still limited to the prediction of only an early event due to its 
computational burden [20]. In order to reduce the computational 
cost, various coarse-grained (CG) methods have been proposed 
by using much simplified description of potential and structure 
[21]. Among these CG methods, the elastic network model (ENM) 
with a single parameter harmonic potential has been widely 
used for studying global dynamics of proteins [22,23]. In this 
short review, we give a brief summary of ENM. An overview of 
the theoretical foundation and the basic features of ENMs are 
presented, focusing on the anisotropic network model (ANM) 
[24-26], and then the extensive applications of ENM are followed.

Elastic network model theory

In 1996, Tirion[22] suggested that a quadratic potential with 
a uniform constant for all atomic interactions would be sufficient 
to describe low-frequency collective motions of macromolecules. 
The corresponding potential is as follows: 

1 0 2
, , ,

1 1

1 ( ) ,
2

−

= = +
= −∑ ∑

n n
i j i j i j

i j i
U k R R 	



Central

Kim et al. (2014)
Email:   

JSM Enzymol Protein Sci  1(1): 1001 (2015) 2/6

where ,i jR , 0
,i jR  are the instantaneous and equilibrium 

difference between ith and jth atom, respectively, and ,i jk  is a 
spring constant between them, which equals to 1 if ,i jR is within 
a cutoff distance and zero otherwise. At first, Bahar and Jernigan 
suggested 7Å as the reliable distance cutoff value in their 
Guassian network model (GNM), from which one could predict 
the accurate B-factors compared to the experimental ones 
[23,27-28]. Zheng empirically proposed that the adequate cutoff 
distance for optimal description in ANM is 8Å [29]. However, a 
distance cutoff of less than 10Å could generate the mathematically 
unstable results in normal mode analysis (NMA) having more 
than six zero eigen values, which physically senses that the 
ENM is too sparsely modelled so that a single collective system 
unrealistically moves like several independent pieces. In order to 
overcome this problem, Jeong and his coworker [30] proposed 
the bond-cutoff method which determines the spring constants 
corresponding to the chemical interactions. This method cannot 
only reduce computational burden, but also generate plausible 
conformational changes, especially for opening motion [31]. As 
an example, (Figure 1) shows the procedure of ENM of a protein. 
Once ENM is constructed, the vibrational characteristics of a 
target protein can be investigated by NMA [32-34]. The equation 
of motion is derived from the Lagrangian mechanics such that

( ) 0,
δ δ
∂ ∂

− =
∂ ∂i i

d L L
dt  \* MERGEFORMAT 		        (1.2)

where L = T-V. T and Vare the general kinetic energy and potential 
energy, respectively. iδ is the ith component of displacement 

vector. Substitution of these two energy terms into Eq. (1.2) 
yields the following equation of motion (EOM).

0,δ δ+ =M K \* MERGEFORMAT 		         (1.3)

Where M is the global inertia matrix consisting of sub-
diagonal 3 by 3 matrices, ,i jM , which represent the specific mass 
values of each representative atom and K is the global stiffness 
matrix having sub-stiffness matrices, ,i jK  such that 
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The full mathematical derivation of EOM is available in Ref. [35]

In order to get more precise analysis, Kim et al. recently 
proposed a mass-weighted chemical ENM (WMCENM) that 
includes not only the chemical interaction but also total masses 
of each residue according to types of residue [31]. Substitution 

of δ by 1/2−M v  in Eq. (1.3) yields the mass-weighted stiffness 
matrix as follows:

1/2 1/2 0,−+ =v M KM v  \* MERGEFORMAT 	            
(1.5)

Once NMA is performed with respect to the transformed 
vector v  in Eq. (1.5), the eigenvector set would be inversely 
transformed into δ by multiplication of 1/2−M . In this eigen 
problem, eigen values and eigenvectors of the target protein 
represent vibration frequencies and corresponding vibration 
mode shapes, respectively [36]. By combining several lowest 
modes, one could represent functionally collective motions of the 
given protein.

Applications of elastic network models  

The most attractive feature of ENM is its simplicity and 
robustness. Despite reduced structural information of coarse-
grained masses simply connected by harmonic springs, the 
combination of conventional normal modes forms an ortho 
normal basis set. Interestingly, global dynamics involving the 
collective motion could be represented through these several 
lowest frequency modes within the normal mode spectrum, thus 

Figure 1 Elastic network representations of for the periplasmic lysine-, arginine-, ornithine-binding protein (PDB ID: 2LAO). (a) Ribbons diagram 
of target protein colored depending on secondary structures. (b) Elastic network connections between the C-alpha atoms (orange sphere). The 
interactions within the cutoff distance of 11Å are illustrated as blue solid lines. (c) Example of the MWCENM. Various chemical interactions are 
represented by different colored lines. Black, green, cyan, yellow, and blue lines indicate backbone, hydrogen bonds, ionic bonds, disulfide bonds, 
and van der Waals interactions, respectively.  
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dynamics behaviors of large systems such as ribosome [37] and 
virus capsids [38,39] that are hardly accessible by MD simulations 
could be elucidated by coarse-grained ENM with the advantage 
of computational efficiency. ENM based dynamics studies can 
provide the comprehensive description of functional motions 
in proteins, which is also consistent with experimental results. 
For example, Wang studied the functional motion of ribosome 
complex using the ENM [37]. The high correlation of motion 
between A-tRNA and P-tRNA indicates that their translocations 
would occur simultaneously. On the other hands, E-tRNA shows 
the weak correlation with other two tRNAs, which represents the 
independent exiting motion from E-site. In short, the comparison 
of several the lowest modes at each subunit provided the 
insight of the translocation mechanism in the ribosome. From 
these studies including other large protein cases, the beauty of 
ENM-based NMA is that lowest frequency modes involving the 
collective motions are sensitive only to structural (i.e. geometric) 
information, not chemical properties of proteins [40]. Therefore, 
ENM based NMA can be widely used for analyzing many biological 
problems. 

As shown in (Figure 2), one of representative studies based 
on ENM is a molecular docking (ligand to protein and protein 
to protein) simulation [41-49]. For instance, Tobi and Bahar 
have showed that structural changes caused by relevant ligand 
binding are strongly correlated with intrinsic motions of proteins 
in their unbound state [48]. This work confirms, in selecting/
rearranging complex formation, the roles of a preexisting 
equilibrium called Monod-Wyman-Changeux model (MWC).
Keskin recently enlarged this hypothesis into the enzymes and 
antibodies case [44]. Regardless of classes of proteins, the set of 
the lowest normal modes, although different combination with or 

without ligand, could cover the limited range of conformational 
states which are adequate for the structural change inbinding 
occurrence. The simulation results showed that an ensemble 
of similar conformations driven by intrinsic motions of native 
state could bind to different antigens or ligand. Despite MWC 
model leads to the more complicated complex combination than 
other two models (i.e. rigid adaptation and induced fit model), 
ENM could be utilized to restrict the number of candidates for 
molecular docking. 

Another interesting application of ENM is the refinement 
of low-resolution structural data using the lowest-frequency 
normal modes [38,50-53]. Tama et al. have proposed the normal 
mode flexible fitting (NMFF) where the flexible fitting of high-
resolution structures into the low-resolution cryo-electron 
microscopy (cryo-EM) data is performed by deforming the 
structure along a few low-frequency normal modes [50,51]. This 
method enables us to build the feasible atomic structure and 
determines the most important mode for its functional motion. 
The similar methodology using a set of the lowest normal modes 
for refinement in low resolution of X-ray crystallography has been 
successively performed [54]. In order to improve the quality of 
low-frequency modes and remove the tip effect, a quite small set 
of collective variables were used as refinement parameter [55]. 
By focusing one assumption of harmonicity of protein motions in 
X-ray crystallography, the proposed refinement protocol results 
in improvements of the resolution, especially in case of large 
and mobile complexes at moderate resolutions [54]. Indeed, 
structure refinement based on ENM and NMA not only replaces 
the traditional homology modeling method based on sequence 
comparison to template, but also steps forward to the abundant 
practical needs such as drug designs [56].

Figure 2 Schematic models of protein-ligand binding. (a) Lock and key model. Since both ligand and protein structures are complementary, they 
fit together as a lock and a key. (b) Induced fit model. When a protein binds to a ligand, conformational change occurs, leading to the additional 
interaction with the ligand. (c) Pre-existing equilibrium model called MWC. Prior to the ligand-protein binding, the conformational flexibility of the 
protein could yield different binding-sites for various ligands.
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ENM is also used for investigating the transition pathway [35, 
55-59]. In case that molecular transition is accompanied by large 
structural change, a harmonic model presumably fails to describe 
it. Instead, a different class of an harmonic structure-based model 
called Go model has been widely used for this purpose [60]. 
Alternatively, an ENM-based pathway generation method called 
elastic network interpolation (ENI) has been introduced [35,59].
The intermediate conformations are generated by interpolating 
two corresponding sets of interatomic distances. This ENI 
overcomes the limitation of ENM-based NMA which only utilizes 
a harmonic potential, thus cannot describe the conformational 
change crossing over the energy barrier. It is also expected 
that ENI can be utilized as a refinement method by filling the 
incomplete information obtained from NMR experiment [63]. 
Moreover, the proposed transition pathway of ENI can act like 
an ensemble of MD data by capturing most of them with a span 
of a few lowest normal modes of each intermediate conformation 
[64].

The further researches have been introduced based on the 
free energy surface. Maragakis and karplus [65] proposed the 
plastic network model (PNM) in which the pathway of adenylate 
kinase (AK) is generated based on free energy surface. Also, the 
similar but more improved approach, mixed-ENM, has been 
proposed by solving the double-well potential function [66].

For convenience, several web servers are now available to 

calculate and visualize NMA results of various proteins. In ANM 
[25] and oGNM [67], one can similarly select either C-alpha only 
or all-atoms for ENM. In order to reduce the computational 
cost, NOMAD-Ref [68] and ElNemo [69] use the building block 
approximation which groups several residues into a single 
block. This grouping method is less effective on observation of 
lowest-frequency modes, but could save substantial amount of 
computing time. However, these coarse-graining methods would 
fail to address the atomic details of protein motions unless any 
other consideration of the rigidity of protein is provided. To 
overcome this limitation, cluster-NMA [70] and hybrid ENM [71] 
have been introduced, in which user can adjust the degrees of 
coarse-graining level from single atom to rigid cluster, regardless 
of the number of atoms that belong to a rigid cluster. More details 
on the complexity of various ENMs can be found elsewhere [72].

Most recently, KOSMOS has been launchedby integrating 
various ENM-based dynamics analysis methods including both 
NMA and ENI [73]. This fully automated web server cannot only 
provide various coarse-grained ENMs from all-atom model to 
rigid-cluster model, but also offer chemical information based 
cutoff method for better simulation accuracy.

CONCLUSION
ENM-based simulation methods have shown great success in 

understanding of biological functions of macromolecules based 

Figure 3 Summary of various ENMs and their applications (courtesy of Ref [72]).
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on their structural information. The fundamental philosophy 
of ENM is that the topological features play a dominant role in 
defining the global and collective motions of proteins. Hence, 
coarse-grained ENMs have been widely used to solve a variety 
of biological problems including functional motions of protein 
complexes, ligand binding mechanism, refinement of low 
resolution structural data, and transition pathway generation. 
Despite ENM sometimes shows the limitation owing to its modest 
coarse-graining [74], this robust simulation model enables us 
to better understand structural dynamics of target proteins at 
various levels. 
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