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Abstract

Despite being identified as a unique disease almost 100 years ago, drugs aimed 
at treating the basic defect in cystic fibrosis (CF) have only recently been approved 
for clinical use. Marketed as Kalydeco and Orkambi (Vertex Pharmaceuticals), these 
medications have improved the lives of many CF patients; yet the goal of treating 
all CF patients remains to be achieved. Although effective, concern has been raised 
regarding the annual cost of treating patients with these drugs, especially since 
patients will be prescribed such medications for life. The current move to a more holistic 
approach to medical care has prompted many people to try various herbal or “natural” 
remedies.  In this review, was assess three such natural treatments; genistein, curcumin 
and resveratrol, and evaluate their potential as adjunct therapies for patients with CF.

INTRODUCTION
Cystic Fibrosis (CF) is a common lethal genetic disease of 

Caucasians, and results from mutations in a cyclic AMP regulated 
anion channel [1,2]. This ion channel, CFTR (cystic fibrosis 
transmembrane conductance regulator), is present in many 
epithelia where it regulates the movement of ions such as chloride 
[3,4], thiocyanate and glutathione [5-7], and bicarbonate [8,9] 
. The absence of CFTR protein and/or function in patients with 
CF results in defective exocrine pancreatic function, intestinal 
blockage, and in males, azoospermia due to absent vas deferens. 
The organ most responsible for morbidity and mortality in CF 
patients is the lungs. Inappropriate salt and water transport 
across airway epithelia leads to the accumulation of thick sticky 
mucus in the lumen of the airways, which traps bacteria, causing 
a persistent airway infection and associated inflammation; such 
chronic inflammation eventually leading to tissue fibrosis and 
destruction. Prior to the incorporation of pancreatic enzyme 
supplements in the therapy of patients with cystic fibrosis, CF 
was regarded primarily as a gastrointestinal disease due to the 
failure to thrive and early death from malnutrition in infants [10]. 
Chronic lung infections are now the primary cause of morbidity 
and mortality in patients with CF [1,11]. 

Gene Therapy

Following the cloning of the CFTR gene in 1989 [12], the early 
hope for a therapy to treat patients with CF was founded firmly in 
the realm of gene therapy, with both viral and non-viral vectors 
being proposed. Indeed, several high profile gene therapy trials 
were initiated, yet none lived up to expectations. Early studies 

focused primarily on proof-of-concept in human nasal tissues, 
using an adenoviral construct [13]. Although CFTR mRNA and 
protein were undetectable, electrophysiological studies hinted at 
some improvement. Subsequent administration of gene therapy 
to the lungs of CF patients also suggested a partial correction 
[14], even though the amount of correction diminished with 
each subsequent treatment. Given current improvements in 
molecular biology, it is likely that future gene therapies may 
involve gene editing of the patient’s chromosomal DNA rather 
that introduction of a transgene [15,16].

Drugs

Pharmacological treatments directed towards the basic 
defect in CF are designed to restore normal salt and water 
transport across affected epithelia [17]. Even moderate increases 
in the function of mutant CFTR are of benefit, since studies on 
individuals with splice variants of CFTR who exhibit only ~10% 
of wild-type CFTR levels appear to have normal lung function and 
normal life expectancy [18]. Although >2,000 different mutations 
have been described in the cftr gene, giving rise to clinical CF, 
they nonetheless fall into two broad categories; those that 
affect protein production, and those that affect protein function 
[2,17]. Some mutations do appear in both categories, as is the 
case for the most prevalent mutation, ∆F508, which constitutes 
about 70% of the mutant CFTR alleles in North America [19]. 
Given the two broad classes of CFTR mutation, it has become 
apparent that two categories of drug are likely to be required 
to treat patients with CF, based upon their unique genetic 
makeup. Thus, compounds that increase the protein expression 
of mutant CFTR are referred to as “correctors”, whilst those that 
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increase the functional activity of mutant CFTR are referred to 
as “potentiators”. High throughput screening (HTS) strategies 
by Vertex Pharmaceuticals (Cambridge, MA) resulted in the 
identification of the “potentiator” ivacaftor (VX-770) [20] and 
the “corrector” lumacaftor (VX-809) [21]. In 2012, the Food and 
Drug Administration (FDA) of the US Government approved the 
first drug to treat the basic defect in CF. Marketed as Kalydeco, 
VX-770 targeted one of the more common mutations in CF 
patients of Scandinavian descent, G551D. The G551D protein is 
characterized as a protein which is able to exit the ER and inserts 
into the plasma membrane but has markedly reduced ion channel 
function. In 2015, Vertex Pharmaceuticals received further FDA 
approval for a drug that combined the potentiator ivacaftor with 
the CFTR corrector lumacaftor, and marketed as Orkambi. This 
combination is primarily aimed at the common ∆F508 mutation, 
which displays both protein production challenges and functional 
problems.

Whilst clinically of enormous benefit [22,23], a criticism of 
the Vertex drugs has been the pricing structure, with Orkambi 
and Kalydeco priced at more than $300,000 a year. Paul Quinton, 
a Professor of Biomedical Science at the University of California 
at San Diego, a pioneer in CF research and himself a CF patient has 
called this pricing “egregious” [24], a sentiment echoed by many 
CF clinicians, including Dr. David Orenstein, co-director of the 
Palumbo Cystic Fibrosis Center at the University of Pittsburgh. 
With this in mind, and the current trend in natural therapies, it is 
not surprising that many patients and their families have sought 
alternatives to “big pharma” solutions. Indeed, a growing trend 
amongst patients with chronic diseases, such as CF, diabetes 
or coeliac disease, is the pursuit of alternative or “natural” 
remedies. This trend is reflected in the growing number of health 
food stores with advertising for a myriad “herbal cures”. Perhaps 
one of the classical examples of this approach is in the treatment 
of chronic pain or headache, where extracts from Willow bark 
have proven to be beneficial. The active ingredient in such 
extracts is the compound salicylin, a forerunner of the modern 
pharmaceutical acetylsalicylic acid, or aspirin [25]. Interestingly, 
several “natural” compounds have received attention as drugs 
reported to increase CFTR activity, including isoflavones, 
flavones, capsaicin, curcumin and resveratrol [26]. In this review, 
we highlight three of the proposed therapies for CF arising from 
natural sources, and evaluate their scientific merit. 

Genistein

One of the first compounds found to impact mutant CFTR 
was genistein [27,28] (Figure 1a). Genistein (5,7-dihydroxy-3-
(4-hydroxyphenyl)4H-1-benzopyran-4-one) is part of a family of 
compounds referred to as isoflavones; heterocyclic polyphenols 
found naturally in many legumes [29,30]. Perhaps one of the 
richest sources of genistein is soya (although in soya, genistein 
occurs as the glycoside, genistin). Numerous health benefits have 
been ascribed to genistein, including its actions as a phytoestrogen, 
an antioxidant and a tyrosine kinase inhibitor [30,31], and 
genistein has been proposed to be effective in various disorders 
such as cancer, cardiovascular disease and menopausal problems 
[30]. Although the effects of genistein can be somewhat weak, its 
low toxicity has encouraged researchers to evaluate genistein as 
a potential therapeutic agent. The discovery that genistein could 

act as a CFTR “potentiator” drug [27,32-34] raised the possibility 
that genistein could be used in patients with CF. Indeed, studies 
suggested that not only could genistein augment the ion channel 
activity of G551D CFTR [27,35] , a function/gating class of mutant 
, but also the common ∆F508 mutation a mixed function/amount 
mutant [27,36], and intriguingly, wt CFTR [27]. The notion that 
genistein might be effective against G551D CFTR is attractive, 
since the G551D mutation results in a protein that reaches the 
plasma membrane as a mature protein, therefore in the correct 
cellular location, but with severely impaired function [36]. i.e., 
a single molecular defect. Excised patch clamp studies showed 
that direct application of genistein could increase CFTR currents, 
implying that CFTR itself was the target for genistein [27,37-40]. 
Indeed, a recent molecular modeling study has identified five 
possible binding sites for genistein in the nucleotide binding 
domains (NBDs) of CFTR [41], although further work is required 
to verify functionally each of these sites. One possible explanation 
for the beneficial effects of genistein on CFTR, is that genistein 
may stabilize the NBD dimer in CFTR by binding at the interface 
or by inducing conformational changes [26].  In addition to its 
actions as a potentiator, there are indications that genistein 
may also have corrector activity, since long term treatment 
of cells with genistein has been shown to increase the level of 
protein expression for mutant CFTR [42]; however 3-fold higher 
concentrations were found to be inhibitory. 

Figure 1 Chemical structure of naturally occurring compounds 
proposed for use in CF patients (a) genistein, (b) curcumin, (c) 
resveratrol.



Central
Bringing Excellence in Open Access





Bradbury et al. (2016)
Email:  

JSM Gastroenterol Hepatol 4(1): 1054 (2016) 3/8

Since CFTR is an ion channel, its activity can be measured 
electrically. One such method, applicable in patients with CF, 
is a nasal potential difference (NPD) measurement [43], which 
measures the voltage across the nasal epithelium. This voltage 
arises from transepithelial ion transport, and in part reflects CFTR 
function. Differences between NPD of control and CF patients 
was identified over 30 years ago [44], thus changes in NPD can 
be reflective of the efficacy of therapeutic treatments. In one 
study, application of genistein (50 µM) to the nasal epithelium 
of CF patients bearing the G551D mutation restored 15% of 
wild type CFTR function [45]. Given its low toxicity, genistein 
appears to be a good candidate for the treatment of patients 
with CF. Importantly, the effective concentration for channel 
modulation (~2-3 µM), is within the range of achievable plasma 
levels of genistein (~1-2 µM) [46]. With regards to CFTR protein 
production, the observation that 100 µM genistein is inhibitory 
is somewhat irrelevant given achievable plasma concentrations. 
However, it also means that “corrector” concentrations of ~30 µM 
are also unlikely to be achievable. Although a clinical trial using a 
combination therapy of 4-phenylbutyrate and genistein has been 
planned, it was cancelled before the trial was initiated. What the 
long term exposure of patients to genistein would be, particularly 
exposure since infancy remains to be determined [47].

Curcumin

Turmeric, a root belonging to the ginger family, is a spice 
widely used in Asian cuisine, and has also been used for 
centuries as a part of the herbal therapies in Siddha medicine 
[48]. Discovered in the 1800’s the principal active ingredient 
in turmeric is the diarylhepanoid curcumin (Figure 1b), a 
compound which give turmeric its characteristic yellow 
colouring. Scientific interest in curcumin arose with a paper 
published in 1949 describing the antibacterial actions of 
curcumin [49], specifically against Staphylococcus aureus. 
This is of particular interest since S. aureus is one of the main 
contributors to airway infection in patients with CF. Curcumin is 
now widely available as a nutritional supplement, and is reported 
to have anti-inflammatory, anti-tumour and antioxidant effects 
[50-52]. In vitro, curcumin has been shown to inhibit a number 
of enzymes, including HDAC1,3,8 [53,54], cyclooxygenase [55], 
and importantly for ∆F508 CFTR, the sarcoplasmic - endoplasmic 
reticulum calcium ATPase (SERCA)[56-58]. Inhibition of SERCA 
by curcumin presumably blocks ATP-dependent uptake of 
calcium into the endoplasmic reticulum, thus interfering with 
calcium-dependent processes within the ER, including a number 
of calcium-dependent chaperones. In fact, earlier studies had 
shown that the SERCA inhibitor thapsigargin, could facilitate 
ER exit of ∆F508 CFTR, with subsequent appearance of the 
mutant protein in the plasma membrane [59], where it could 
be available for activation. Similarly, exposure of baby hamster 
kidney cells, expressing human ∆F508 CFTR , to curcumin was 
reported to improve the processing of ∆F508 CFTR allowing 
mutant CFTR to exit the ER and insert into the plasma membrane 
[60]. Thus, there is some evidence that curcumin can facilitate 
exit of ΔF508 CFTR, and that this might be due to low ER calcium 
levels [61,62] , however a mechanism based on SERCA inhibition 
has been challenged by other groups.  Grubb et al measured 
ability of the calcium dependent chaperone calnexin to interact 
with ΔF508 CFTR in the presence of curcumin; an interaction 

that may be expected to change if ER calcium balance is upset. 
However, these workers found no evidence of alteration in the 
interaction between calnexin and ΔF508 CFTR in the presence 
of curcumin [63]. In contrast, recent studies from other groups 
have argued that the effects of curcumin may be due to changes 
in the interaction of ΔF508 CFTR, not with calcium-dependent 
chaperones, but rather with cytokeratins [64,65]. 

Although the in vitro studies of Egan et al suggested a modest 
improvement in ΔF508 CFTR ER export (by whatever mechanism), 
in vivo studies were particularly exciting, since administration of 
oral curcumin to ∆F508 CF mice, resulted in sufficient correction 
of ∆F508 CFTR trafficking that normalized nasal potential-
difference measurements could be attained [61]. This also 
included a reduction in the level of epithelial sodium transport (a 
process which is thought to be a significant contributor to CF lung 
pathology [60]). Intestinal obstruction, a hallmark of CF disease 
in many mouse models (presumably due to congestion of the 
gut by reduced water transport into the gut lumen) and a major 
cause of death in CF mice, was also corrected in CF mice exposed 
to curcumin. The intriguing consequence of these studies was 
the notion that a single, simple, agent was capable of correcting 
∆F508 CFTR in a clinically beneficial manner. In addition to its 
ability to facilitate the exit of ΔF508 CFTR from the ER (i.e., a 
corrector), curcumin has also been shown to have potentiator 
activity directed at wt and ΔF508 CFTR [66] and G551D CFTR 
[67]. A third reported effect of curcumin is the oligomerization 
of CFTR molecules [68]. The slow oligomerization of CFTR 
may, in part, account for the actions of curcumin on CFTR. 
Thus, short exposure of G551D CFTR to curcumin induces a 
reversible activation, whereas prolonged activation produces an 
irreversible robust activation [67]. Studies by Kirk et al, however, 
have shown that the cross-linking characteristics of curcumin are 
also separable from the potentiating aspects of curcumin. Thus, 
cyclic derivatives of curcumin, synthesized de novo lacked the 
ability to dimerize CFTR polypeptides, yet retained the ability to 
activate both wt and G551D CFTR [68]. Therefore, there appears 
to be intriguing evidence that curcumin is efficacious against 
mutant CFTR. Moreover, since curcumin is found in various 
foods, and is sold as a herbal remedy, the idea of clinical trials 
based on a compound with hundreds of years of biosafety was 
very appealing.

Despite the enthusiasm with which the initial report of the 
efficacy of curcumin towards ΔF508 CFTR in both cell lines and 
mouse models [61] was greeted, numerous subsequent studies 
failed to replicate the data. Dragomir and colleagues reported that 
curcumin was unable to induce a forskolin stimulated chloride 
current in either human airway epithelial cells (CFBE) or CF nasal 
epithelial cells [69]. Interestingly, in ΔF508 CFTR expressing 
BHK cells, curcumin caused a modest increase in ΔF508 CFTR 
activity[69]. Studies by Berger et al using well differentiated 
airway epithelial cells were unable to detect any correction of 
ΔF508 CFTR by curcumin [66]. Finally, studies using Fischer Rat 
Thyroid (FRT) cells expressing ΔF508 CFTR showed no evidence 
of enhanced iodide influx (a surrogate assay for chloride efflux) 
in the presence of curcumin, compared to its absence [70]. It is 
difficult to reconcile the positive data from Egan’s group with the 
overwhelmingly negative data obtained from other investigators. 
One might argue that the cell line data reflects an over expression 
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artefact, as initial studies used ΔF508 expression in BHK cells 
[61]. However other groups also using BHK cells expressing 
ΔF508 were unable to document any beneficial curcumin effects 
[71]. With regards to the in vivo mouse studies, the positive 
studies by Egan et al were performed on a mixed background 
(129/sv and C57BL/6) [61]; whereas the negative studies of 
Song et al were on a CD-1 background [70].  In contrast, negative 
data from Grubb et al was obtained used mice of the same genetic 
background (although a slightly different strain) as that for Egan 
and colleagues (Grubb; UNC/CWRU: congenic C57BL/6, Egan; 
C57BL/6), suggesting that murine genetic background is not 
a significant contributor to the variance between the positive 
and negative data surrounding curcumin. An important clinical 
problem regarding the use of curcumin is the achievable plasma 
concentrations, an important issue in human trials. In Phase 1 
clinical trials, dietary curcumin has been shown to exhibit very 
poor bioavailability, which coupled with rapid metabolism and 
excretion [70,72-75] means a very low serum concentration. 
Thus, high concentrations of curcumin cannot be achiever and 
maintained in plasma and tissues following oral ingestion. In 
human studies with healthy volunteers ingesting 10 or 12 g 
curcumin, only one subject had plasma curcumin levels above 
the detection limit of 5 ng/mL [76]. Similarly, Song et al reported 
a peak plasma concentration of 60 nM for curcumin [70] in CF 
mouse studies. This raised concerns of mechanism of action, as 
the initial proposal that curcumin was inhibiting SERCA seemed 
unlikely given the known IC50 for curcumin of 5-15 µM, orders 
of magnitude greater than physiologically achievable in plasma. 
This, of course, does not rule out the possibility that curcumin 
may be doing something to ∆F508 CFTR other than impacting 
its interaction with calcium-dependent chaperones, but clearly 
raises the issue as to whether SERCA could be a target for 
curcumin at physiologically relevant plasma concentrations.

Genistein and Curcumin in Combination

Despite the apparent lack of strong data in support of 
curcumin being a corrector, several groups have reported that 
curcumin has potentiator activity [66,77]. Thus, recent studies 
have investigated the use of combined genistein and curcumin 
as drugs to treat G551D CFTR. In whole-cell patch studies by Yu 
et al, genistein caused a peak increase in G551D CFTR currents 
of almost 25-fold at a concentration of 80 µM, compared to 
curcumin with a peak increase in G551D CFTR currents of 10-
fold at a concentration of ~40 µM [77]. In excised inside-out 
patch clamp studies, Berger reported a 150-fold increase in 
current above baseline, at 10 µM curcumin [66]. Using G551D-
CFTR expressing CHO cells, Yu et al observed that curcumin was 
able to further increase G551D-CFTR channel activity stimulated 
by genistein [77]. Despite both curcumin and genistein being 
CFTR potentiators, the observation that curcumin and genistein 
had additive effects suggests that they work through different 
mechanisms. Curiously, genistein stimulated channel activity in 
cells expressing wt CFTR was inhibited by the further application 
of curcumin [66]. One of the clinical advantages of synergism 
between compounds is the notion that each drug can be used 
at lower concentrations than either compound would require 
if used alone, in fact this seems to be the case for combined 
genistein and curcumin [26]. An ongoing clinical trial in the 
Netherlands is focused on “Comparing the effect of curcumin 

with genistein to treatment with ivacaftor in CF patients with a 
class III mutation”; class III mutations being gating mutations, as 
exemplified by G551D-CFTR. It will be of interest to evaluate the 
results of this study, as the financial implications of such data are 
clearly significant.

Resveratrol

Resveratrol (Figure 1c) has recently received attention as the 
primary ingredient contributing to the health benefits associated 
with red wine. Resveratrol (3,4’,5=trihydroxystilbene) is a 
naturally occurring polyphenolic compound found in vegetables 
and fruits, and abundant in grapes and peanuts [78]. Similarly to 
curcumin, resveratrol is widely available in health food stores 
, and is reported to be effective due to its anti-mutagenic, anti-
inflammatory, anti-oxidant and chemo-protective properties 
[79,80]. The mechanism(s) by which resveratrol achieves 
the effects are not well documented, however it is known that 
resveratrol can increase cellular cAMP levels through direct 
activation of adenylate cyclase [81] and by inhibiting cAMP 
phosphodiesterases [82]. Several reports using cell lines, primary 
mouse tissues, and in vivo mouse NPD, have shown that resveratrol 
can increase the ability of ∆F508 CFTR to exit the ER and traffic to 
the cell surface and be functional [83−86]. Such studies reported 
an increase in conversion from immature core glycosylated band 
b (ER form) ∆F508 CFTR to mature fully glycosylated band C 
(post Golgi form) ∆F508 CFTR, and salutary effects including 
increased airway fluid secretion and mucocilliary clearance. 
One interesting observation was that resveratrol appeared to 
increase the activity of ENaC, enhancing absorptive sodium 
transport [85], potentially further exacerbating the enhanced 
sodium hyper-absorption seen in CF airways [87]. In the hands 
of other researchers, resveratrol was able to increase wt CFTR 
expression, but was unable to increase ∆F508 CFTR expression in 
expression systems [88]. Using primary human airway epithelial 
cells from patients homozygous for the ∆F508 CFTR mutation, 
our studies were unable to demonstrate any benefit from 
resveratrol exposure, even though known “correctors” were 
effective [88]. Moreover we were also unable to see any effects 
on amiloride sensitive sodium currents, suggesting that ENaC 
was not a target for resveratrol. Interestingly, resveratrol by 
itself could stimulate chloride secretion across a human colonic 
monolayer, a stimulation that was markedly enhanced by the 
addition of a small amount of forskolin. Such observations are at 
least consistent with the hypothesis that resveratrol can enhance 
CFTR activity by acting as a phosphodiesterase inhibitor [88,89]. 
It is possible that resveratrol works directly on CFTR by acting as 
a potentiator, indeed, resveratrol has been reported to increase 
the open probability (Po) of murine CFTR [85], although it should 
be noted that murine CFTR has different electrophysiological 
properties than human CFTR [90]. Intriguingly, although 
monomeric resveratrol can increase CFTR activity, oligomeric 
resveratrol is a CFTR inhibitor [91].

What accounts for the differences in these studies using 
resveratrol? At present it is not entirely clear, however there 
are certainly differences in cell models used. Another issue 
is the concentration of resveratrol used in the studies. The 
majority of studies seeing efficaciousness of resveratrol do so 
at concentrations >50 µM. Indeed the studies of Jai et al also 
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see an effect of resveratrol on wt CFTR at concentrations above 
50 µM [88]. However, as with curcumin, the issue of effective 
in vitro concentration versus achievable plasma concentration 
is an issue that has to be addressed. Although beneficial effects 
for resveratrol are reported at concentrations about 50 µM, the 
maximal achievable plasma concentration is ~ 2 µM [80,92,93], 
even with high dose oral administration. When physiologically 
relevant levels of resveratrol were applied to primary human CF 
tissue, no beneficial effects on chloride transport were observed 
[88]. Thus, although resveratrol may be useful in cell models, its 
current use in humans seems premature.

DISCUSSION AND CONCLUSION
At the same time as pharmaceutical companies are developing 

new synthetic drugs to treat CFTR mutations, compounds from 
natural sources are also being evaluated. Such compounds range 
from exotic extracts of South Pacific sponges [94], to plants that 
can be found in any neighborhood grocery store. What should be 
the response of CF patients and their families to these natural 
compounds discussed above? Should patients be placed on a 
steady diet of curries and red wine? It is an unfortunate truth that 
many preparations of natural remedies are not standardized, 
nor do they always contain the level of active ingredient that 
they are purported to have. Furthermore such remedies are not 
subject to regulatory oversight, as are drugs from pharmaceutical 
companies. However, it is also true that while the current pricing 
for FDA approved CF drugs from Vertex Pharmaceuticals is 
~$300,000 per year, supplements such as genistein, curcumin 
and resveratrol can be obtained for a few hundred dollars per 
year. Certainly for curcumin and resveratrol, the achievable 
plasma concentrations are significantly lower than those that 
are reported to be efficacious in mutant CFTR correction. From 
an achievable plasma concentration standpoint, genistein likely 
holds the most potential. Current clinical trials employing 
genistein should help provide a clear answer as to the utility of 
genistein in treating patients with CF. Given the wide availability 
of the naturally occurring compounds discussed, it is not 
surprising that CF patients are willing to test such compounds 
on themselves. 

The fact that compounds such as curcumin, genistein 
and resveratrol are common dietary ingredients does not 
prove they have a strong safety profile, since other common 
dietary constituents have shown toxicity when used as dietary 
supplements [95].  For example, 7 µM curcumin has been 
shown to induce both mitochondrial and nuclear DNA damage 
[96]. Oleoresin, an organic extract of turmeric containing 
levels of curcumin similar to those found in commercial grade 
curcumin [97], when fed to rats over two years, was associated 
with increased incidence of ulcers, hyperplasia and intestinal 
inflammation [97]. Even in humans, ingestion of 0.8 to 3.6 g/day 
curcumin for 1 – 4 months led to nausea, diarrhea and increases 
in serum lactate dehydrogenase and alkaline phosphatase 
[98].  Moreover, the cytotoxic properties of curcumin appear to 
be enhanced in the presence of many over the counter (OTC) 
medications, including ibuprofen, aspirin and acetaminophen 
[99]. In contrast to curcumin, genistein and resveratrol appear 
relatively benign.  In a multiple dose study in which health 
volunteers received one dose of resveratrol (25 – 150 mg, or 

placebo) every 4 h for 48 h, no significant adverse effects were 
reported [100].  Longer term animal studies (750 mg/kg/day 
for 3 months) in rabbits and rats, also failed to note any overt 
toxicity [101]. Although soy and its constituents (e.g. genistein) 
have been consumed at high levels in Asian populations for 
millennia without apparent adverse effects, the fact that genistein 
is a phytoestrogen has raised concerns about the potential 
endocrine effects of genistein. High soy consumers have serum 
genistein in the range of 1 – 5 µM [102], and such levels have 
not been associated with any negative effects. Similarly, animal 
studies have shown that high soy diets have no adverse effect on 
the reproductive system of prepubertal rhesus monkeys [103]. 
Although long term studies with high genistein consumption 
remain to be performed, genistein appears to have a very good 
safety profile.

We are beginning to tease out the mechanisms whereby 
natural compounds impact upon CFTR biology, whether directly 
on CFTR as appears to be the case with genistein, or with CFTR 
gene promoters as may be the case with resveratrol. At present 
it still remains to be determined what mechanistic effects, if 
any, are associated with curcumin on CFTR. Whether natural 
compounds will ever be a truly viable therapy for patients with 
CF remains unclear. What previous studies have shown however, 
is that it is important to understand the exact mechanistic actions 
by which such compounds impinge on mutant CFTR to cause it to 
traffic and/or function better. Such knowledge has the potential 
to impact on a rational design of synthetic drugs for CFTR, such 
that ultimately a safe, effective and inexpensive drug is available 
to treat patients with CF.
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