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Abstract

Epilepsy is a neurological condition characterized by unpredictable recurrent seizures that affects about 50 million people worldwide. In Temporal Lobe 
Epilepsy (TLE), the most common form of epilepsy in adults, seizures are often resistant to drug treatment. Environmental enrichment (EE) has positive effects 
on the psychological and physiological well-being of the animals and provides news insights into mechanisms of experience-dependent plasticity, including 
neurogenesis and synaptic plasticity. 

Objectives: Evaluate the impact of EE on behavioral changes (latency and frequency of seizures, cognitive process and anxiety) in rats subjected to 
lesional epilepsy model induced by lithium- pilocarpine (LIP) and changes in BDNF levels in the hippocampus. 

Methods: Wistar rats were exposed to an EE protocol and to a standard environment since weaning (PND 21) for 5 weeks. After this period, the animals 
of both groups (EE and standard) were randomized and injected with LIP or lithium saline solution and video-monitored for 60 days to evaluate the latency 
and the frequency of seizures. After this period we performed behavioral tests: Elevated Plus Maze (EPM), Open Field Test (OFT), Rearing and Novel Object 
Recognition (NOR) to evaluate memory and anxiety. The BDNF expression was assessed in the hippocampus by ELISA method. 

Results: EE decreased hyperactivity, preserved short-term memory and increased the latency to the onset of spontaneous seizures of LIP rats compared 
to LIP rats of conventional environment. However, there were no difference in anxiety level and in the total number of seizures between conventional and EE 
groups. BDNF expression was increased in the hippocampus of rats LIP exposed to EE compared to LIP of conventional environment. 

Conclusions:  EE is a safe and effective strategy to reduce behavioral changes caused by spontaneous seizures.

ABBREVIATIONS 
ANOVA: Analysis of Variance; BDNF: Brain-Derived 

Neurotrophic Factor; EE: Environmental Enrichment; ELISA: 
Enzyme-Linked Immunosorbent Assay; EPM: Elevated Plus 
Maze; LIP: Lithium-Pilocarpine; OFT: Open Field Test; NOR: New 
Object Recognition; SE: Status Epilepticus; TLE: Temporal Lobe 
Epilepsy. 

INTRODUCTION
Epilepsy is a neurological condition characterized by 

unpredictable recurrent seizures that affects about 50 million 
people worldwide. Is a common disorder, particularly in poor 

areas of the world, and can have a devastating effect on people 
with the disorder and their families [1]. Mesial Temporal Lobe 
Epilepsy (MTLE) is the most common form of partial epilepsy 
in adult, affecting approximately 60% of patients with epilepsy. 
Hipocampal sclerosis (HS) is frequently associated with MTLE and 
is characterized by the selective loss of neurons in hippocampal 
subfields, gliosis, atrophy and synaptic reorganization, and has 
been associated with seizure generation and propagation [2,3]. 
Nevertheless, about 20% of patients with TLE do not show 
cellular loss, but present reactive gliosis [4].   

Structural and functional changes resulting from the MTLE 
can reach not only structures in the temporal lobe, but also in 
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the frontal lobe. These changes may be associated with problems 
in cognitive processes, including executive function, working 
memory, attention, decision, language, planning and judgment. 
Furthermore, they may be associated also with anxiety, psychosis 
and depression, dramatically reducing the quality of life of these 
people [5-7].  The Pilocarpine model, whether or not associated 
with lithium, is a well-studied model of MTLE, which has been 
widely used, as it reproduces the main pathologic characteristics 
observed in humans [8]. Following systemic application of high 
doses of Pilocarpine, rats exhibit uninterrupted seizures in an 
acute period lasting 15-18 hours. Then, animals show normal 
behavior and electroencephalographic recording patterns for a 
period of approximately 14 days, also denominated latent period. 
This period terminates with the appearance of spontaneous 
epileptic seizures initiating a chronic phase maintaining for 
the remaining animal’s life time [9]. All rats displaying SE for 
at least 1 h develop hippocampal sclerosis that is characterized 
by selective cell loss in the CA1, CA3 subfields and hills of the 
hippocampal formation, dispersion of granular cells of the 
dentate gyrus, mossy fiber sprouting and neurogenesis [9-
11]. Rats subjected to Pilocarpine usually present cognitive 
impairment, being a suitable model to study the mechanisms 
involved in the generation of seizures and behavioral changes, 
and new therapeutic strategies [7]. Studies have shown 
that neuronal injury induced by pilocarpine contributes to 
cognitive deficit, which appears in the late stage of the model 
[9]. Many studies have shown that environmental enrichment 
(EE) enhances performance of rats in various behavioral task 
assessing motor, learning and memory and emotional functions 
for reviews see [12]. EE has also demonstrated beneficial effects 
on the recovery of several disorders of the central nervous system 
such as Alzheimer’s, Parkinson’s disease, Huntington’s and 
epilepsy [13,14]. It has been shown that EE had beneficial effect 
in temporal lobe epilepsy (TLE) models. EE reduced the injury 
caused by kainic acid and improved the performance of rats 
subjected to lithium pilocarpine model (LIP) in spatial memory 
tasks [15], increased cell proliferation and survival decreasing 
seizures and improving cognitive impairments [16].

The BDNF (brain-derived neurotrophic factor) has been cited 
as one of the factors responsible for neuro plasticity caused by 
EE [17-20].

The present study was aimed to determine the effect of EE 
on behavioral changes caused by Lithium-Pilocarpine (latency 
and frequency of spontaneous seizures, cognitive process and 
anxiety).  Rats were video-monitored for better define the latency 
for the onset of the first spontaneous seizure and the frequency 
of spontaneous seizures. The BDNF level was determined in the 
hippocampus as a marker of neuroplasticity.  

MATERIALS AND METHODS

Animals 

Sixty adult male Wistar rats (350 ± 30 g) provided by the 
biotery of Federal University of São Paulo (CEDEME-UNIFESP) 
were housed under controlled conditions (22 ± 1°C, 12/12h 
light/dark cycle, lights on at 7:00 a.m.) with water and food ad 
libitum. All experiments were approved by the ethics research 
committee of the UNIFESP (CEUA N° 8740200814). Efforts were 

made to minimize pain or discomfort of animals. The experiments 
were performed following the principles outlined in the ARRIVE 
(Animal Research: Reporting of InVivo Experiments) guidelines 
and the Basel declaration (http://www.basel-declaration.org). 
The 3R concept (Replacement, Refinement and Reduction of 
Animals in research) has been considered when planning the 
experiments. 

Enrichment Protocol

After weaning (21 days after birth), rats were grouped 
randomly, and maintained during 5 weeks in two types of 
environments, standard or enriched. For enriched environment 
rats (N = 8/box) were housed in a box with total area of   66 X 80 
X 34 cm built on from the junction of two boxes joined by a PVC 
pipe with 15 cm of diameter (Figure 1A). In this box were placed 
objects that allowed the practice of voluntary exercise (wheels, 
ramps, pipes), objects to shelter (pots or boxes) and objects to 
sensory stimulation (colored balls, pet bottle, wooden batons) of 
different colors, textures and materials (metal, plastic and wood). 
The objects were changed, rearranged and washed three times 
per week to ensure the effect of novelty and challenge. 

The age of onset, duration and other parameters of the 
environmental enrichment protocol were chosen based 
on previous data [19,21]. Animals kept in cages with no 
environmental enrichment (N = 5/cage) were housed in plastic 
cages measuring 33 x 40 x 17 cm (Figure 1B). After 5 weeks rats of 
both conditions were taken and subjected to systemic application 
of lithium-pilocarpine to induce epilepsy, or saline.

Lithium Pilocarpine Model

Animals from EE or NE environments were subjected to intra 
peritoneal injection (i.p.) of lithium chloride (Sigma - LiCl, 127.17 
mg / ml) diluted in saline 0.9% administered 16 to 20 hours prior 
to subcutaneous injection (s.c.) of methyl scopolamine nitrate 
(ME, 1mg / kg) diluted in 0.9% saline. ME was used to limit 
peripheral cholinergic effects of pilocarpine hydrochloride, such 
as diarrhea, piloerection, orofacial automatisms associated with 
salivation, wink, vibrissae contractions, yawning [11]. Pilocarpine 
was injected intraperitoneally (30 mg/kg s.c., Sigma-Aldrich) 30 
min after ME to induces SE. The control group received lithium 
and saline instead of pilocarpine. After two hours of SE duration, 
rats were treated with thiopental (30 mg / kg, i.p.) and diazepam 
(1 mg / kg s.c.) to minimize behavioral seizures.  This procedure 
was used to increase animals survival rate presenting SE. 
Following 48 hours, the surviving animals were rehydrated with 

Figure 1 (A) Environmental enrichment cage; (B) Standard cage.
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2 ml of 0.9% saline (s.c.) for 2 days.  The following groups were 
used in the study (N=15 rats/group)

1. Animals exposed to EE and subjected to the LIP model

2. Animals exposed to EE and treated with saline

3. Animals exposed to standard condition and subjected to 
the LIP model

4. Animals exposed to standard condition and treated with 
salines

Video-Monitoring

Starting 4 days after SE-induction, video-monitoring (24 
hours / 7 days) was performed over a 2-month period in order 
to assess the latency for the first seizure and the frequency of 
seizures. At the end of the video-monitoring, rats were subjected 
to behavioral tests for cognitive evaluation.

Open Field 

The open field test (OFT) was performed in a single session of 
10-minutes. The test consists in placing the animal in the center 
of the apparatus (circular field of 1 m diameter) and observes 
the distance walked and the immobility time in the apparatus. 
Two natural behaviors of rodents, i.e. the tendency to explore 
new environments and aversion to light and open spaces were 
evaluated [22-24].We used video-monitoring coupled to the 
software Any Maze® to analyze these behaviors.

Elevated plus Maze

The Elevated Plus Maze (EPM) is one of the classic tests 
used to measure anxiety [25-27]. The apparatus consists two 
closed and dark arms, and two open arms and clear, with ground 
elevation by 50 cm.

The test consists in placing the animal in the center of the 
apparatus, and measure the movement toward the closed or 
open arms during 5 min. Less anxious animals usually remain 
more time in the open arm. The numbers of entrances in the arms 
are quantified using Any Maze® software.

Novel Object Recognition 

The novel object recognition (NOR) is a test of learn and 
memory.   Rats are exposed to specific objects in a circular field 
of 1 meter diameter, bordered by a transparent acrylic cylinder 
of 50 cm diameter. The animals undergo a period of adaptation 
of 20 minutes for 3 consecutive days to reduce the effect of the 
environment novelty. After the adaptation period, the animals 
are exposed to two identical objects, with same color and shape, 
for 5 minutes, and the time that the animal explores each object 
is measured by stopwatches. Following this, one familiar object 
is removed and replaced with a novel object.  After two hours 
of the first exposure, rats are put back in the same place and for 
5 minutes the time spent exploring the novel object is recorded. 
The exploratory movement is determined when the animal 
touches with his nose each object. The NOR is assessed by the 
preference in explore the novel object, and the time spent by the 
animal in exploring each object on test trial. Studies have shown 
that animals usually spend more time exploring the novel object 
in the second exposure [28].

Euthanasia

One day after the behavioral tests, the animals were 
anaesthetized with ketamine and xylazine (150 mg/kg and 30 
mg/kg, respectively), and then euthanized by decapitation using 
a guillotine. The brains were removed from the skull over ice plate 
and the hippocampi (right and left) were dissected and placed in 
tubes, frozen in liquid nitrogen and stored in -80°C freezer until 
the experimental day.

Enzyme-linked Immunosorbent Assay

 BDNF was quantified in the hippocampus samples using 
the enzyme-linked immunosorbent assay test - ELISA (Phoenix 
Pharmaceuticals, Inc.). Tissues were homogenized in a 
proportion of 100 mg of tissue per 1ml, of lysis buffer (TBS, 1% 
NP40, Triton X-100 1% and 10% glycerol) containing protease 
inhibitor (Sigma-Aldrich) (1 µl per 100 μl of lysis buffer). The 
samples were centrifuged (12,000 rpm at 4 ° C for 20 minutes), 
the supernatant transferred to a new micro tube and the pellet 
discarded. Bradford method was used to estimate protein and 
400µg of protein was used in the assay [29].

BDNF of samples was estimated using a standard curve 
obtained with serial dilutions of BDNF provided by the kit. 
Analyses were in duplicate. The plates were incubated for two 
hours at room temperature under agitation (300-400 rpm). The 
wells were washed 4 times with 350 μl of buffer solution, the 
supernatant discarded and the plates were pressed on blotting 
paper to dry. After this, 100 µl of biotinylated anti-BDNF were 
added into each well, and incubated for two hours at room 
temperature. After new washing sequence, 100 µl of SA-HRP were 
added into each well, the plates were incubated for 30 minutes at 
room temperature. After washing, 100 µl of the solution (TMB) 
were added in each well and the plates were again incubated 
during 30 min. Finally, a stop solution (hydrochloric acid, 100ul/
well) was used to block the reaction and the plates were read at 
450nm using Epoch® Gene5® reader software.

Statistical analysis 

The analysis was performed using SPSS software. (IBM – 
version 17.0 or superior).For evaluation of the Open field test, 
Elevated Plus Maze and BDNF we used a two-way analysis of 
variance (ANOVA), to analyze the factors Environment and 
Pilocarpine. For analysis of New Object Recognition we used 
ANOVA with repeated measures. Bonferroni was used as post-
hoc test.  The latency and the frequency of seizure were evaluated 
by Student´s t Test.  Data were expressed as mean ± standard 
deviation and a p <0,05was considered significant.

Words

Rats housed in an EE took longer to manifest the first 
recurrent seizure after LIP administration compared to those 
housed in a conventional environment (t (13) = 2.939, p <0.05) 
(Figure 2). No significant differences was observed in the total 
number of seizures in LIP rats housed in EE compared to rats 
housed in a standard environment (Figure 3).

The analysis of the total locomotion (central and peripheral) 
by two-way ANOVA revealed a significant effect on environmental 
factor (F (1,38) = 10.302; p <0.05) and in the pilocarpine factor 
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(F (1,38) = 15.266; p <0.05), but no interactions was observed 
between these factors (Figure 4). Rats from LIP group showed 
higher activity (total locomotion inside the apparatus) than the 
saline group, and EE reduced the locomotion behavior in both LIP 
and saline groups.

Rats raised in an EE had lower frequency of rearing than rats 
raised in a standard environment (F (1, 38) = 4.484; p <0.05) 
(Figure 5).

The analyze of the time spent in the open and in the closed 
arms by rats from LIP and saline group by two-way ANOVA 
revealed no significant effect of the factors pilocarpine and 
environment, nor the interaction between these factors (Figure 
6A, 6B).

The time spent by rats in exploring novel object was analyzed 
by ANOVA with repeated measures.  Rats from LIP group raised 
in a standard environment spent similar time exploring usual 
object (A1) as the novel object (B). However, rats LIP raised in 
an EE spent much more time exploring novel object indicating an 
improving in the memory deficits caused by seizures (F (1,31) = 
21,829; p<0,05) (Figure 7).

The BDNF expression in the hippocampus of rats LIP raised 
in both conditions, EE and standard environment, increased 
significantly  compared to their respective control group (F (3,38) 
= 8.960; p <0.05) (Figure 8).  However, the increase observed in 
rats raised in EE was higher than rats LIP raised in a standard 
environment, showing that EE intensified the BDNF expression.

DISCUSSION
This study aimed to investigate the impact of EE on behavioral 

aspects (anxiety, hyperactivity, latency and frequency of seizures) 
and in the hippocampal BDNF level of LIP rats compared to LIP 
rats housed in a conventional environment. Several studies 
using EE have shown changes in hippocampal neurogenesis and 
plasticity, with positive effects on animal welfare exposed to an 
experimental model [30,31].

In the present study, EE caused a significant increase in the 
latency for the appearance of the first spontaneous seizure in LIP 
rats compared with LIP rats kept in a standard condition.   No 
difference in the total number of seizures was observed in LIP 
rats exposed to EE compared to conventional environment.

There are many reports showing a beneficial effect of EE in 
the TLE, such as reduction in the frequency and the severity of 
seizures, and in neuroprotection [14,32]. Many mechanisms have 
been associated with the antiepileptic and a neuroprotective effect 
caused by EE, among them increased release of neurotrophic 
factors, strengthening of inhibitory circuitry mediated by GABA, 
neurogenesis, and neurotransmitter release [33-35].

Figure 2 Latency for the appearance of the first spontaneous seizure after 
SE in rats housed in an EE (38 ± 13,09) compared to rats housed in a standard 
environment (17 ± 14,61). Data are expressed as mean ± standard deviation. * 
P <0.05.

Figure 3 Total number of spontaneous and recurrent seizures of rats LIP, 
previously housed in an EE (3 ± 1,7) or in a standard environment(3 ±1,8).

Figure 4 Total locomotor activity of rats LIP or saline (A), housed in an EE or in 
a standard environment (B). Data are expressed as mean ± standard deviation. 
* P <0.05.

Figure 5 Frequency of rearing of animals subjected to LIP and saline (A), 
housed in an EE or in a standard environment (B). Data are expressed as mean ± 
standard deviation. * P <0.05.
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rats subjected to Pilocarpine following EE, may be a result of 
partial preservation of LTP and protection of hippocampal “place 
cell”. 

In the present study, we have shown that rats raised in 
a standard environment and subjected to LIP present hyper 
locomotion behavior and the EE decrease this altered behavior. 
Rats housed in a EE decreased the frequency of rearing and this 
result corroborate with the other authors [19].

Recent evidence indicates that EE can alters dopaminergic 
signaling by decreasing dopamine uptake in medial prefrontal 
cortex (mPFC) and increasing dopamine uptake in orbital frontal 
cortex (OFC) of rats. The increase in the extracellular dopamine 
in the mPFC caused by EE may be a mechanism involved with 
the decrease in the locomotor activity in rats [34]. On the other 
hand, the decreased extracellular dopamine in the OFC can be 
responsible for reducing the impulsive choice in behavioral 
tasks [34]. The analysis of dopamine concentration in further 
study may help to understand the behavioral changes observed 
in the present study. The analysis of data from EPM test showed 
that there was no significant difference on anxiety between the 
groups. There are many reports showing that rats subjected 
to temporal lobe epilepsy models (e.g. pilocarpine, lithium-
pilocarpine, kainic acid) present increased locomotor activity and 
reduced anxiety level during spontaneous and recurrent seizures 
phase [33,35,37].The divergence between our study and those 
from the authors may be due to the use of different protocols 
and test conditions applied in the studies. Seizures induced 
by pilocarpine cause cell loss in limbic structures, mainly in the 
hippocampus, piriform cortex and amygdala and is frequently 
associated with cognitive deficit [38,39].  

The analysis of recognition memory using NOR showed that 
EE intensified the time spent by control rats in exploring novel 
objects compared to rats housed to conventional environment. In 
LIP, the time spent exploring novel object was similar in to those 
spent in the first exposition. When LIP rats were exposed to EE, 
the time spent exploring the novel object increased compared 
to those housed in a conventional environment, showing that 
rats recovered the ability to explore novel objects.   Our data 
are in contrast with those of Detour et al. [33] that didn´t verify 
differences in the tasks of object-recognition between LIP and 
control groups, suggesting that object discrimination is preserved 
despite expressive damage in regions involved with memory and 
anxiety as hippocampus, amygdala and entorhinal cortex. 

Studies have shown that exposure to EE results in various 
structural and functional changes that may contribute to 
the preservation of memory, including increase in dendritic 
branching and synapse number in the cortex and hippocampus, 
in addition to increases in neurogenesis and in synaptogenesis in 
CA1 and CA3, brain areas usually affected by recurrent seizures.

Additionally, EE can attenuate expression of cytokines as IL-
1B and TNF-alpha and improve hippocampal-dependent tasks 
[43,44]. There are many authors reporting increased level of 
cytokines in the hippocampus of rats subjected to pilocarpine 
model, including IL-1B and TNF-alpha, and these changes have 
been associated with hippocampal damage [45-48]. Considering 
this property of EE in modulate the expression of IL-1B and TNF-

Figure 6 Time spent in the open (A) and closed (B) arms, expressed as mean 
± standard deviation by rats subjected to saline and LIP groups, after house in 
an EE or in a standard environment. No significant differences was observed 
between the groups.

Figure 7 Time spent in exploring the novel object (B) compared to the usual 
object (A1)by animals subjected to LIP or saline, previously housed to an EE or 
to a standard environment. Data expressed as mean ± standard deviation. * P 
<0.05.

Figure 8 BDNF levels in the hippocampus of rats subjected to LIP or saline, 
previously housed in an EE or in a standard environment. Data are expressed as 
mean ± standard deviation. *P< 0,05, when compared to saline group; #P< 0,05, 
when compared to rats housedin a standard environment.

In a recent study, Zhang et al. [36] have reported an association 
between hippocampal neurogenesis and dendritic growth of 
newborn neurons after kainic acid-induced TLE, with reduced 
long-term seizure activity and cognitive improvement in spatial 
learning in rats exposed to EE during 1 month compared to those 
of conventional environment. Fares et al. [32] also demonstrated 
beneficial effect of EE at weaning on behavioral changes and 
cellular loss caused by Pilocarpine in rats. According to 
the authors, the improvement in cognitive decline observed in 
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alpha and attenuate hippocampal damage improving cognitive 
function, this may help explain why our LIP rats showed an 
improvement in learn and memory tasks.

Besides improving the performance in object-recognition 
tasks, EE induced a significant increase in the BDNF level in 
the hippocampus of LIP compared to saline. BDNF was also 
significantly increased in LIP rats housed in conventional 
environment, but was greater in EE rats. BDNF is a neurotrophin 
able to regulate Long-Term Potentiation (LTP), in particular in 
its primary phase, Early Long Term Potentiation (LTP-E), and is 
involved with learn and memory [17,49-51].  BDNF is reported to 
be released during neuronal activity. LIP model present cell loss 
in several brain areas and BDNF expression increases in the same 
regions [52-54]. This increase in BDNF expression caused by EE 
can contribute to improve the cognitive function in LIP rats.

The EE was used in this study showing beneficial effects on 
behavioral deficits related to epileptogenesis. Several studies 
used simultaneous EEG and video-monitoring for confirming 
behavioral changes and seizures classification after treatments 
aiming to modify or block seizures. However, in this study we 
used video-monitoring to obtain preliminary data regarding the 
EE effect on behavioral deficits induced by LIP. Our data indicate 
that activities that stimulate active social life and cognition may 
have a beneficial effect in the neurological clinic protecting the 
brain against deleterious effect of the aging.

CONCLUSION
Rats raised in an EE show increased latency for the onset of the 

first spontaneous seizures, normal locomotion and improvement 
of cognitive deficit after being injected with LIP. The beneficial 
effect of EE is accompanied by significant increase in BDNF 
expression in the hippocampus, indicating that BDNF may be a 
mechanism involved with memory improvement observed in LIP 
treated rats.
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