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Abstract

In humans, social communication is mostly conveyed by facial expressions, which 
are widely shared among Mammals. Based on current knowledge, we explore the 
concept of facial communication from an evolutionary point of view and examine 
how far it might not only be performed by Mammals, but more broadly by Amniotes. 
As we investigate facial communication in various species, we find out that facial 
expressions are restrained to Mammals. However, even if non-mammals lack of 
cutaneous facial muscles responsible of facial expressions, they display facial signals 
bearing a communicative value. Thus, facial communication is not clustered to Mammals. 
Moreover, some facial displays are shared by almost every Amniotes, as the eye-
blink which has been suggested to be related to social factors aside its physiological 
role. Yet, to understand the terminology of this research field, definitions should be 
unified. Thus, based on current data on Amniotes’ facial communication, we proposed 
extended definitions of facial movements, behaviours and expressions: movements are 
visible displacements of body segments or tissues. They are motor action that do not 
need cognitive and emotional implication, while behaviours require the interpretation 
of environmental or internal stimuli, as the presence of an audience or emotional 
experiences. Behaviours are movements that can be involved in social communication. 
So facial behaviours are not cluster to Mammals but might be also expressed by other 
Amniote’s species. Whereas facial expressions are facial behaviours generated by the 
contraction of cutaneous facial muscles, innervated by the cranial nerve VII, and thus 
only expressed by Mammals.

ABBREVIATIONS
AU: Action Unit; AD: Action descriptor; FACS: Facial action 

coding system; CN: Cranial nerve 

INTRODUCTION
The face supports multiple functions as hearing, vision, 

breathing, feeding and social communication. In Mammals for 
example, facial expressions may display emotions and intentions 
of an individual [1,2] with a variable accuracy depending on 
the species. Several definitions of facial expressions have been 
proposed, sharing similarities but lacking precisions. According 
to Ekman [3], facial expressions are universal signals reflecting 
individuals’ emotional states. Ying-Li Tian added that these 
signals can be used in social communication [4], and Harley 
associated facial expressions to underlying muscles [5]. Waller 
and colleagues [6] suggested that facial “expressions” should 
not be used and instead proposed facial “behaviours”. They 
defined it as “observable facial movements associated with 
the typical behavioral repertoire of a species that potentially 

have communicative meaning to conspecifics.” As for facial 
expressions, the term “behaviour” has a massive amount of 
definition, which varies between almost every author [7-9]. Yet, 
Levitis and colleagues [10] proposed a definition based on the 
reviewing and polling of behavioural scientists: they defined it 
as “the internally coordinated responses (actions or inactions) of 
whole living organisms (individuals or groups) to internal and/or 
external stimuli, excluding responses more easily understood as 
developmental changes.” As the term “expression” or “behaviour” 
may drive emotional or communicative content, the neutral term 
“movement” will be used in this article to evaluate the various 
aspects of facial communication. 

Studies of facial expressions started at the end of the 19th 
century [11,12] but a new impetus has been given during the 70’s 
with Ekman’s proposal of the Facial Action Coding System (FACS), 
allowing a unified analysis of human facial expressions based 
on their facial musculature [13]. Studies on animals were not 
abundant until the beginning of the 21st century, when research 
on animals’ facial communication gained interest. FACS started 
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to be adapted for animals, first in Primates as chimpanzees [14], 
hylobatids [15], orangutans [16] and macaques [17], then in 
domestic animals with dogs [18], horses [19] and cats [20]. At 
the same time, studies focused on animal welfare created pain 
scales in many species: in mice [21], rats [22], rabbits [23], horses 
[24], sheeps [25,26], pigs [27], goats [28], ferrets [29], seals [30], 
cattles [31] and cats [32]. This increase of studies about facial 
communication in the last decade requires the unification of the 
terms used in this field. 

This review focus on facial movements involved in the 
production of communicative signals in Amniotes in general, 
and not only mammals in a wider evolutionary perspective, as 
excluding other species than mammals may lead to underestimate 
the importance of facial movements in social communication 
and to miss information about their evolution. How far facial 
movements could be used as indicators of communicative abilities 
in non-human species is not so clear, except for the anthropoids. 
As many Amniotes species express behaviours related to 
emotions [33], they might express communicative and emotional 
content by facial movements too, as it is assumed to be for facial 
expressions in humans [5]. This evolutionary approach requires 
to clarify the definition of facial expression and behaviour 
based on the Amniotes’ clade. It will be discussed by looking at 
anatomical, neurobiological, evolutionary and socio-ethological 
features of facial movements across Amniotes’ species. 

Facial movements in Mammals 

Neuroanatomical features of facial movements: In 
addition to masticatory muscles and with few exceptions, 
Mammals’ head possess cutaneous muscles –also called facial 
muscles- originating from bones or fibrous structures, they are 
the only group of muscles inserting into the skin [34]. Their 
contractions create lines, folds and wrinkles [35]. They have 
specific characteristics compared to skeletal muscles of the 
limbs and the trunk [36–38]. They are striated with a larger 
percentage of slow type fibers but possess Ruffini-like corpuscles 
for proprioceptive functions [36,39] instead of muscle spindles 
and Golgi’s tendon organs [36–38,40].

However, non-cutaneous muscles as masticator muscles also 
contribute to some facial movements described in FACS, as Jaw 
drop (Action Unit (AU) 26 [14,18,20]), through the action of the 
digastric and masseter muscles.

Moreover, specific muscles have been newly developed 
along with domestication as the levator anguli occuli medialis in 
dogs, not found in wolves [41–43]. This muscle raises the inner 
eyebrow (AU101). Interestingly, dogs expressing more AU101 
are adopted faster [18], suggesting a selective advantage because 
of an infant-like display. 

The embryogenic origin of the head and the neck tissues are 
common portions of the embryonic foregut. There are five pairs 
of pharyngeal arches in all Amniotes [44,45]. From the first arch 
will develop the jaws and the masticatory muscles along with 
the trigeminal nerve (cranial nerve V (CNV)) whose V3 branch 
innervates them. Facial cutaneous muscles of Mammals are 
a subgroup of hyoid muscles, and they arise from the second 
pharyngeal arch in gestation together with the facial nerve 
(CNVII) [46,47]. 

Facial cutaneous muscles are innervated by the CNVII [34], 
except the levator palprebrae superioris which is innervated by 
the CN III [48] (the oculomotor nerve). This nerve is derived from 
the basal plate of the embryonic midbrain. The retractor bulbi, a 
non-cutaneous muscle implied in eye movements, is innervated 
by the CN VI [49]. Muscles implied in head movements are non-
cutaneous and present a similar pattern in most mammals [50]. 
They are innervated mostly by CN XI and cervical spinal nerve 
[50].

In humans, 24 facial muscles contribute to facial expressions 
[51,52]. Remarkably, there are few variations of this amount 
between species (Table 1). Rodents, such as rats (Rattus 
norvegicus), have up to 24 facial muscles, whereas 23 are 
described in Macaca mulatta, 21 in Lepilemur ruficaudatus, 22 in 
Tupaia, 22 in Pan troglodytes, 24 in Gorilla gorilla, 21 in Pongo 
pygmaeus, 23 in Hylobates [53]. Yet, some species possess less 
muscles, as dogs and horses which, besides ears muscles, have 
both 16 muscles [34] and 18 in cats [20]. Similar number of 
muscles is coherent with distribution of neuroanatomical traits 
that appear to have been highly conserved through phylogenetic 
history [54] with few variabilities within clades [55]. Meanwhile, 
some muscles may be conserved, absent or vestigial in some 
taxa as a result of their specific evolutionary process [56]. 
However, the number of facial muscles is not the only factor 
of facial movement’s complexity. Their combined actions with 
small anatomical, physiological or biochemistry variations may 
produce a larger variety of facial movements between taxa [57–
59]. 

Brainstem nuclei may have evolved with ecological 
adaptations and reflect specializations of peripheral structures 
[60–65]. A strong relationship has been found between the size 
of neural and muscular structures and their use frequency [66]. 
For example, among the Apes, the larger species have a larger 
facial nucleus and display more expressive faces than the smaller 
one [67,68]. Primates with larger facial nuclei tend to have higher 
differentiation of facial muscles which may reflect a greater use 
of vision in social communication [69]. Several anthropoids have 
direct cortico-motoneuronal innervation to facial nerve. This 
allows higher accuracy in voluntary motor command of facial 
muscles [70–78], while in non-anthropoid Mammals axonal 
projections are polysynaptic via synaptic connections in the 
parvocellular reticular formation [79,80].

It should be noted that the facial nerve’s enlargement 
may be observed in species which do not rely substantially on 
visual communication for social interactions, like the nocturnal 
prosimians Tarsius and Otolemur [69,81]. In Tarsius syrichta, 
the great volume of the facial nerve is probably related to the 
orbicularis oculi and depressor palpebrae inferioris whose fibers’ 
structure is specialized to protect the exceptionally large eyeball 
[69,82].

Cetaceans are different from the other Mammals, even if they 
are phylogenetically Artiodactyla [83], they live in an aquatic 
environment [84]. One of their environmental adaptation is a 
“low” facial mobility due to modifications or disappearances of 
facial muscles [85]. The muscles mobilizing the eyelids are the 
only ones keeping a similar role with the terrestrial Mammals 
[85]. Cetaceans have also a massive retractor bulbi muscle [86], 
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Table 1: Comparison of facial muscles in various Mammals with their respective facial movements (the list is not exhaustive).  

Muscles Species and references Associated Action Unit and Action Descriptor

Frontalis

Chimpanzee [229]
Hylobatid  [15]
Macaque [17]

Orangutan [230]
Cat [20]
Dog [18]

Horse [19]
Suidae [231]
Camel [232]

Nd
Nd
Nd
Nd
Nd
Nd
Nd
Nd
Nd

Procerus

Chimpanzee [229]
Hylobatid  [15]
Macaque [17]

Orangutan [230]

Nd
41 (Glabella lowerer)

41
4 (Brow Lowerer)

Mentalis

Chimpanzee [229]
Hylobatid  [15]
Macaque [17]

Orangutan [230]
Cat [20]
Dog [18]

Horses [19]
Suidae [231]
Camel [232]

17 (Chin Raiser)
17
17
17
Nd

17, 16+17
17
Nd
Nd

Risorius Chimpanzee [229] Nd

Mouth

Orbicularis oris

Chimpanzee [229]
Hylobatid  [15]
Macaque [17]

Orangutan [230]
Cat [20]
Dog [18]

Horses [19]
Rabbit [233]
Mice [234]

Rat [51]
Ferret [29]
Pig [235]

Sheep [236]
Camel [232]
Dolphin [85]

22 (Lip funeler), 24 (Lip pressor), 25 (Lips part), 28 (Lip suck)
18 (Lip pucker), 22, 25, 28

8 (Lip toward each other), 18, 25
18, 22, 24, 25, 28

118(Lip pucker), 25
118, 25,

118, 122 (Upper lip curler), 24, 25
Nd
Nd
Nd
Nd
Nd
Nd
Nd
Nd

Levator labii superioris

Chimpanzee [229]
Hylobatid  [15]
Macaque [17]

Orangutan [230]
Cat [20]
Dog [18]

Horse [19]
Rabbit [233]
Mice [234]

Rat [51]
Pig [235]

Sheep [236]
Camel [232]
Dolphin [85]

10 (Upper lip raiser) 25 (Lips part)
10, 25
10, 25
10, 25

125 (Lips part)
110 (Upper lip raiser), 125

125
Nd
Nd
Nd
Nd
Nd
Nd
Nd

Levator nasolabialis

Cat [20]
Dog [18]

Horse [19]
Rabbit [237]
Mice [238]

Rat [51]
Ferret [29]
Pig [235]

Sheep [239]
Camel [232]

Seal [240]
Dolphin [85]

25, 109+110 (nose wrinkle+upper lip raiser)
10, 25, 109+110

10, 113 (Cheek puffer), 25, 109+110
Nd
Nd
Nd
Nd
Nd
Nd
Nd
Nd
Nd
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Caninus

Chimpanzee [229]
Cat [20]
Dog [18]
Rat [51]

Sheep [239]
Camel [232]

13
25, 109+110

10, 25, 109+110
Nd
Nd
Nd

Depressor labii inferioris

Chimpanzee [229]
Hylobatid  [15]
Macaque [17]

Orangutan [230]
Cat [20]

Horse [19]
Rabbit [241]
Suidae [231]

16 (Lower lip depressor), 25
16, 25
16, 25
16, 25

16
16, 17 (chin raiser), 25

Nd
Nd

Depressor labii superioris
Suidae [231]
Sheep [239]
Camel [239]

Nd
Nd
Nd

Depressor anguli oris

Chimpanzee [229]
Hylobatid  [15]
Macaque [17]

Orangutan [230]
Rabbit [237]
Mice [242]

Sheep [236]

15 (Lip corner depressor)
Nd
Nd
Nd
Nd
Nd
Nd

Chimpanzee [229]

Levator anguli oris

Chimpanzee [229]
Gibbon [15]

Macaque [17]
Orangutan [230]

Nd
Nd
Nd
Nd

Buccinator

Chimpanzee [229]
Hylobatid  [15]
macaque [17]

Orangutan [230]
Cat [20]
Dog [18]

Rabbit [243]
Mice [244]

Rat [51]
Pig [235]

Sheep [245]
Camel [232]

Nd
Nd
Nd
Nd
118

116 (Lower lip depressor), 118
Nd
Nd
Nd
Nd
Nd
Nd

Zygomaticus

Chimpanzee [229]
Hylobatid  [15]
Macaque [17]

Orangutan [230]
Cat [20]
Dog [18]

Horse [19]
Rabbit [237]

Rat [51]
Mice [234]
Ferret [29]

Sheep [236]
Camel [232]

Seal [30]

12 (Lip corner puller)
12
12
12
12
12

12, 25 (Lips part)
Nd
Nd
Nd
Nd
Nd
Nd
Nd

Incisivii labii

Hylobatid  [15]
Macaque [17]

Orangutan [230]
Horse [19]

Camel [232]

18
18
18
18
Nd

Eyes
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Orbicularis oculi

Chimpanzee [229]
Hylobatid  [15]
Macaque [17]

Orangutan [230]
Cat [20]
Dog [18]

Horse [19]
Rabbit [246]
Mice [242]

Rat [51]
Ferret [29]

Suidae [231]
Sheep [236]
Camel [232]
Dolphin [85]

Seal [240]

6 (Cheek Raiser), 43 (Eye closure), 45(Blink)
5 (Upper Lid Raiser), 6, 7 (Lid Tightener), 43, 45

6, 8 (Lips toward), 43, 45
6, 43, 45

143 (Eye closure), 145 (Blink), 47 (Half-blink)
143, 145

145
Nd
Nd
Nd
Nd
Nd
Nd
Nd
Nd
Nd

Nose

Levator labii superioris 
alaquae nasi

Chimpanzee [229]
Gibbon [15]

Macaque [17]
Orangutan [230]

Cat [20]
Dog [18]

Horse [19]
Ferret [29]

Sheep [236]
Seal [30]

9 (Nose wrinkle)
9
9
9

109+110
109+110

10, 113 (Sharp lip puller), AUH 13 (Nostril lift)
Nose wrinkle

Nostril litf
Nostril lift

Whiskers

Muscles described in cat: 
Lateralis nasi, orbicularis 

oris, caninus

Cat [20]
Ferret [29]

Seal [30]
Rat [22]

Mouse [21]

200 (whisker retractor), 201 (whisker protractor), 202 (whisker raiser)
Nd
Nd
Nd
Nd

Ears
Muscles described in 
macaque Auricularis 

anterior (EAU101), superior 
(EAU102) and posterior 

(EAU103)

Macaque [17]
Cat [20]
Dog [18]

Horse [19]

EAD/EAU 101 (ears forward), 102 (ears adductor), 103 (ears flattener)
EAD 101, 102, 103, 104 (ears rotator), 105 (ears downward), 106 (ears backward), 

107 (ears constrictor)
EAD 101, 102, 103, 104, 105

EAD 101, 102, 103, 104
Head Action descriptor

Chimpanzee [229]

Cat [20]
Dog [18]

Horse [19]
Macaque [17]

Hylobatid  [15]

51 (head turn left), 52 (head turn right), 53 (head up), 54 (head down), 55 (head 
tilt left), AD 56 (head tilt right), 57 (head forward), 58 (head back)

51, 52, 53, 54, 55, 56, 57, 58
51, 52, 53, 54, 55, 56

55, 56
Nd
Nd

Non cutaneous
muscle

Platysma

Chimpanzee [229]
Hylobatid  [15]
Macaque [17]

Orangutan [230]
Cat [20]
Dog [18]

Horse [19]
Rabbit [247]

Rat [51]
Ferret [29]
Mice [234]

Sheep [236]
Pig [248]
Seal [240]

Nd
21 (Neck tightener)

Nd
Nd
Nd

12, 25 (Lips part), 116 (Lower lip depressor)
Nd
Nd
Nd
Nd
Nd
Nd
Nd
Nd
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present in Reptilians, Birds and almost all Mammals [86,87]. 
In these last species, its function is to move the nictitating 
membrane, the so-called “third eyelid” [88] but Cetaceans do 
not have one [89]. However, their well-developed retractor 
bulbi, used to retract the eye into the orbit [84], may help to 
close hardly mobile and particularly thick eyelids filled with a 
high amount of fat. Some Cetaceans have developed a specific 
moveable structure on their nose, the melon [91,92], which 
seems to be a communicative tool (orientation, reception and 
emission of sound) in beluga [90]. Moreover, some species 
perform some facial movements, as belugas can alter the shape 
of their mouth, without a clear communicative value identified, 
whereas dolphins express the “jaw clapping” which seems to be 
an antagonist signal [90,93]. 

Ecological influence on facial movements: The body 
size seems correlated to facial mobility in anthropoid monkeys 
[68], as a small body size may constrain the evolution of facial 
movements. However, this strict linear relation might be too 
restrictive as gorillas and chimpanzees present a similar number 
of AUs in their respective FACS but have different body size [94].

Moreover, body size is correlated to visual acuity, as eye axial 
length depends of the body size [95–97]. Eye size determines the 
distance between the lens and retina, which implies the retinal 
image size [98] and consequently its precision [99]. A good visual 
acuity allows the use of accurate visual cues to communicate [100], 
whereas species with poor visual acuity might develop other 

communicative pathways, such as echolocation for Chiropterans 
[101]. Thus, visual acuity might influence the diversity of facial 
expressions. Yet, this hypothesis is not supported by findings 
on other species than Primates, as species with poor visual 
acuity such as rats (0.95 c/deg [102]) or cows (1.6 c/deg [103]) 
perform a diversity of facial movements. On the other hand, some 
Cetaceans have a good visual acuity (~25 c/deg in dolphin [104]) 
but lack facial mobility. Yet, to date, no study directly addresses 
this question. 

Obstruction of the visual field (by trees for example) does 
not seem to influence the production of facial movements either, 
as arboreal Primates do not produce fewer facial movements 
than terrestrial ones [94,105]. A similar idea would be that 
nocturnal animals display fewer facial movements than diurnal 
ones, and indeed, nocturnal animals perform less eye blinks 
[105,106]. Nevertheless, cats are mainly nocturnal animals, and 
they have the greatest amount of AU described in animal FACS, 
including ears and whiskers movements [107],[108]. However, 
it is not clear how far these movements disclose communicative, 
cognitive, or ecological values, such as visual perception, sound 
localisation and tactile perception of surrounding. 

Facial movements help to handle conflict or to regulate 
social bond [109–113]. For example, Apes live in big groups 
[113,114] and express complex facial displays in social 
interactions [15,16,113,115]. Various facial movements are 
displayed regarding either aggressive, submissive or affiliative 

Masseter

Chimpanzee [229]
Hylobatid  [15]
Macaque [17]

Orangutan [230]
Cat [20]
Dog [18]

Horse [19]
Rabbit [243]

Rat  [249]
Mice  [238]
Ferret [29]

Sheep [239]
Pig [248]

Camel [232]

Nd
Nd
Nd
Nd

26, 27
26, (Jaw drop), 27 (Mouth stretch)

26, 27
Nd
Nd
Nd
Nd
Nd
Nd
Nd

Pterygoid

Chimpanzee [229]
Hylobatid  [15]
Macaque [17]

Orangutan [230]
Cat [20]
Dog [18]

Horse [19]
Ferret  [250]

Pig  [248]
Rat [251]

Rabbit [252]
Mice [253]

Sheep [236]
Camel [254] [255]

Nd
Nd
Nd
Nd

26, 27
Nd
Nd
Nd
Nd
Nd
Nd
Nd
Nd
Nd

Various non-cutaneous 
muscles

Chimpanzee [256]
Hylobatid  [256]
Macaque [256]

Orangutan [256]

26, 27
26, 27
26, 27
26, 27

Abbreviations: Nd = presence of the muscle in this species but no associated action is described in the literature; AU= Action Units, facial 
movements generated by specific muscle groups [257]; AD = Action Descriptors, facial movements without a clear identified muscular basis [257]; 
EAU= Ears Action Unit; EAD = Ears Action Descriptor.
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situations, as the “silent bared teeth” in Primates [14], [116,117]. 
Moreover, Dobson [94] demonstrated that “social group is a good 
predictor of facial mobility”. The difference between gorillas 
and chimpanzees could be clarified regarding their sociality, as 
chimpanzees live in big groups whereas gorillas live in small or 
dyadic groups [118]. Mating systems might also influence social 
interactions complexity [119] and brain size, more specifically 
the size of the cerebral areas involved in face processing 
[1,2,120]. Gibbons and siamangs are monogamous species and 
have fewer facial cutaneous muscles than their close relatives, 
chimpanzees [121,122]. The GibbonFACS describes fewer action 
units [15]. It has been suggested that monogamy induces less 
opportunities for social interactions and that the extension of 
facial movements in bigger groups could result of a necessity to 
increase combination of displays or to enhance understanding of 
signals, thus group cohesion [94]. 

In opposition, some solitary animals present various facial 
movements. Orangutans perform a wide repertoire of facial 
movements, almost as important as social Primates [16]. Sun 
bears display various types of open-mouth expressions during 
social play, even if they rarely take part into interactions 
with congeners [123]. The authors suggested that their facial 
expressions might not have evolved in adaptation to “complex 
social environment”. 

Behavioral evolution: Facial movements allow individuals 
to share their internal states with congeners [124–127]. In this 
matter, facial movements are a useful tool in social interactions 
and even slight changes can display different intensities for 
the same state [116,128]. Thus, facial movements are accurate 
visual cues to measure emotions. The negative valence has been 
more studied, and many mouth movements can express negative 
emotions [58,58,125,129–133]. But tiny variations can change 
the meaning, as open mouth with exposed teeth is a sign of fear 
in Primates [58,129,134], but during positive contexts, the same 
movement without teeth exposure occurred. Some movements 
are also associated with positive emotions: dogs’ ears get closer 
during positive situations [131], horses’ ears are pulled back 
during a pleasant event [127] or chimpanzees’ head movements 
are displayed during affiliative interactions [135]. Yet, the most 
investigated state is pain thanks to several pain scales which 
allow scientists to monitor animals’ welfare. The main share 
changes observed in many species, that might indicate a common 
origin, are nose wrinkling, orbital tightening, ears flattening, 
open mouth, reduction of distance between ears and whiskers 
retraction [21–27,29,32,128,136–138]. 

It is important to keep in mind that AUs do not bear a 
signification per se but composed faces are meaningful, even if 
some movements are more expressed during specific situations 
such as stress or relaxation. 

Facial movements might have evolved from physiological 
role to communicative tools, e.g. ears flattening might have firstly 
belong to a startle reflex developing later a communicative value 
[139]. The nose wrinkle and upper lid raiser, performed during 
fear, were displayed originally to protect sensitive regions 
(mouth, nose, eyes) from biting. Darwin suggested that disgust 
face helped to protect from toxic substance [140], and later 
evolved as a communicative tool. Moreover, some scientists 

proposed that the actual anger face might be a vestigial version 
of aggressive biting behaviours, without proof supporting this 
theory [141]. Nowadays, in Primates, open-mouth without 
exposed teeth is observed in pleasant contexts [58,129,134], and 
bears also performed it during play situation [123]. Primates 
relaxed open-mouth -supposed to be the premise of the human 
smile- is a non-aggressive play signal, as the silent bared-
teeth which is assimilated to smiling and laughing in humans 
[142,143]. This supposes that these displays are dissociated 
from their original function. This hypothesis is supported by the 
research of Davila-Ross [144], as chimpanzees open-mouth face 
is produced during social play and can be associated with laugh 
vocalizations. Yet, Canids’ horizontal and vertical lip retraction 
have opposite signification, respectively a submissive greeting 
and dominant threat [145]. Thus, facial movements’ signification 
varied among species, even if they share similar evolutionary 
patterns in Primates. 

Primates can perform facial movements as soon as they 
are born, with smile, anger and innate movements for bitter 
tastes [1,146][147,148]. Facial movements seem to be shaped 
by mimicry of parent facial displays [149]. Exposition to facial 
movements of conspecifics help to develop both recognition and 
production of facial movements [1].

The importance of facial movements in social context can 
be illustrated by the “audience effect”, defined as changes in 
individuals’ behaviour observed by another [150], for example 
an increase of facial expressions in humans [151–153]. A similar 
phenomenon has been described in various species, such as 
gibbons [154], orangutans [155] and dogs when humans face 
them [156]. In horses, results are less clear, as an observer 
presence effect has been described for global behaviour [157–
159] but not for facial movements -in a pain context [138]. But in 
another context, horses expressed differently facial expressions 
while an experimenter is present [160].

Facial movements in non-mammal animals 

Anatomical features of facial movements: Non-mammal 
animals lack cutaneous facial muscles, and their rigid facial mask 
prevents the production of facial movements [161]. Yet, Birds 
possess orbicularis oculi muscles similar to the Mammals’ one, as 
the depressor palpabrae ventralis whose relaxation allows Birds 
to close their eyes [162]. Reptiles move their eyelids thanks to the 
depressor palpebrae inferioris [163]. Indeed, Birds’ and Reptiles’ 
upper eyelid is thick, less mobile than the lower one. Moreover, 
Reptiles possess the retractor bulbi, absent in Birds, which acts as 
in Mammals [164], [162].

Reptiles possess jaw muscles similar to Mammals’ ones, as 
the levator anguli oris or pterygoid muscles [165–168] [169]. 
Within the 8 muscles implied in beak movements in Birds [169], 
three are shared with Reptiles [165,169,170]. These muscles are 
used in various situation: agonistic behaviours or sexual parades 
[171,172]. Reptiles neck muscles are similar to Mammals’ one 
[173–175], whereas Birds’ neck muscles are mainly different 
[176]. They allow to move the head and take part into various 
choreography [172,177,178]. Lacking external ears, Sauropsida 
lack ears muscles, as they lack nose muscles. To date, no study 
references the number of facial muscles in neither Birds nor 
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Reptiles.

Even if many reptiles as turtles, snakes and crocodiles 
use mainly olfactive and tactile communication, some of 
them, especially lizards, disclose a large repertoire of visual 
communicative tools [179], as body movements [180]. Where 
Birds present feathers crown or colour spots [181], some lizards 
possess a dewlap for Anolis (extensible flap of skin under the 
throat) or a frill (an erectile throat fan around the neck) as 
facial ornaments [177,180], [177]. The dewlap and the frill 
are supported by the hyoid apparatus [177,182] and dewlap 
movements are generated by the ceratohyoid muscle [182]. 

The hyoid apparatus, including the ceratohyoid muscle 
mobilizing the dewlap, is a derivative of the 2nd pharyngeal arch, 
[182], like Mammals’ facial muscles. Non-mammal’s similar to 
or shared muscles with Mammal’s are innervated by CN V like 
the orbicularis oculi in Birds [162,183] or the levator anguli oris 
in lizards [184], instead of the CN VII in Mammals [34], except 
for the depressor mandibulae in Reptiles [185]. Some muscles 
are innervated by the CN VI as the retractor bulbi in Reptiles and 
Mammals, absent in Birds [49,162,164]. In non-mammals, the CN 
VII role is to innervate glands [162], the choroid [186] and some 
of its fibers “mixed” with the CN V [162].

As in Mammals where the size of facial nucleus varies with 
facial movements repertoire, in songbirds high vocal center 
and robustus archistriatalis nucleus size are correlated with 
song repertoire [187] [188]. Yet, the direction of the correlation 
is unknown, and either it could be the number of songs which 
determines the size of the nuclei, or the size of the nuclei which 
determines the number of songs learned. More generally, 
brain size in Birds has been linked to sociality [189] and body 
weight [190]. In lizards, frequency of use and size of dewlap are 
correlated. The size of the muscle fibers and the motoneurons 
innervating the cerato-hyoideus muscle are correlated to the size 
of the dewlap [191]. 

Ecological influence on facial movements: Birds’ brains, 
as Mammals’ ones, are bigger than Reptiles’ and Amphibians’ 
brains. This difference is particularly noticeable in songbirds 
and Primates, and they are groups which communicate the most 
through long distances thanks to visual and vocal pathways [190]. 

Birds’ eyes are proportionally bigger than Mammals’ 
ones compared to their body size [192]. Moreover, Birds -and 
especially raptors- have among the best visual acuity in animal 
reign, reaching 140c/deg in eagles [193], or 73 c/deg in falcon 
[194]. Indeed, Birds rely mainly on visual information in order to 
scan their environment [192], contrary to Reptiles [179].

Various ecological factors are related to visual acuity as hunt 
distance in Birds [195] and predators’ detection [196]. Blackwell 
and colleagues [196] did not manage to establish a correlation 
between visual acuity and behavioural responses, but they 
suggested that visual characteristics might influence behavioural 
responses and risk evaluation.

Reptiles have a low visual acuity, around 1.2 c/deg for Anolis 
[197]. Regarding to other Reptiles, some species can reach up to 
6.8 c/deg or 4.9 c/deg [198]. Another study points that Atlantic 
green turtle is myopic out of water [199], contrary to Cetaceans 
which have a better view in air than in water. To date, no study 

mentioned a possible correlation between visual acuity, body 
size and facial movements in Birds or Reptiles.

As Mammals, Birds eye-blink rates varied upon nocturnal 
and diurnal species. Indeed, diurnal species blink more than 
nocturnal ones [106], even if blinking might not be related to 
environmental properties as temperature and wind speed [200].

Both diurnal and nocturnal bird species modify their foraging 
behaviours at night, as diurnal Birds can be active at night too 
[201]. Because of the lower visibility, they perform shorter 
movements [202]. To our knowledge, no study mentioned 
behavioural differences between nocturnal and diurnal birds or 
reptiles. It might be because Birds and Reptiles, as Anolis, are 
mainly diurnal [203], [204], even if some species can be nocturnal 
[205–207]. 

In Birds and Reptiles, some facial or head movements have 
communicative values that might influence group cohesion. 
For example, the beak is involved in both agonistic behaviours 
(peaking opponent) and affiliate ones (allopreening for example) 
and so, is a key feature of Bird’s communication [171,208,209]. 
The ruffling of Birds’ feathers is associated with aggression, on 
the other hand the slicking of feather is an avoidance behaviour 
[161,210]. In lizards, the headbob of the Anolis or the dewlap 
movements are used to communicate with congeners and 
maintain or reject interactions [177,178]. 

Each movement can convey a specific or several significations, 
as food-solicitating or stressful events with head bobbing in 
parrots [211]. On the opposite, lizards’ dewlap and frill provide 
information about individuals’ gender and is used in competition 
for resources, sexual partners and preservation of territories, 
especially between males [178–180,212]. These movements 
among others are performed by head features, and thus might be 
considered as facial movements.

Mating style seems to be linked to communication complexity 
[119], but as Birds are mainly monogamous and reptiles 
polygamous [213], it would be difficult to investigate a potential 
effect on their facial movements. However, in Birds, extrapair 
copulation are observed and can even lead to a “divorce” 
[214,215]. Moreover, a positive correlation has been found 
between brain size and pair bond strength, and the authors 
suggested it might be the result of higher cooperation and 
negotiation [189]. These interactions could be based on specific 
head movements, but no study investigated yet their potential 
role on the stability of pair cohesion. 

However, sociality alone cannot explain signal complexity. 
A study found a correlation between social factors and signal 
complexity only in lizards, with sexual size dimorphism correlated 
to ornaments, color and headbobs [216]. In Birds, ecological 
factors and allometry seem to be good explanatory factors to 
signal complexity. Ecology can influence sociality: because of 
luminosity, obstructions and interferences by acoustic or visual 
backgrounds which can mask signals, animals adopt strategies to 
enhance communication signals. Some lizards for example, which 
switched from terrestrial to arboreal lifestyle, developed more 
elaborate territorial displays [216]. 

Behavioral evolution: In Birds, some behaviour might 
have evolved from thermoregulation to communicative signal. 
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Feathers erections have an agonistic value, but they also can 
indicate health status to conspecifics [210], as Birds appears 
bigger, they also seem more threatening. In lizards, no study 
investigated in our knowledge significance evolution of their 
head movements.

Birds behaviours are influenced by the social context. 
The most relevant example might be crows and jays caching 
behaviours. These species pay attention to both auditory 
and visual presence of competitors. Jays adapt their caching 
location in order to cache their food at a greater distance of their 
conspecifics [217]. However, the recovery of food items is not 
influenced by the presence of conspecifics. 

Moreover, various Birds modify their vigilance behaviours 
when they are in groups. Birds alone “regroup” their eye-
blinks during feeding times, in order to better monitor their 
environment. Also, blink duration seems to be shorter when 
Birds are alone [218] and bigger the group is, longer is the time 
spent blinking. 

DISCUSSION
 Facial expressions are currently cluster to Mammals, based 

on the exclusive presence of cutaneous muscles in this class. 
They reveal internal states such as emotions, which can serve 
as public information and social communicative tools [1,2]. Yet 
emotions are also suggested to be expressed by non-mammals, as 
reptiles and birds. Stress-related tachycardia may have emerged 
in the class of Amniotes, as frogs and fishes do not disclose such 
phenomena during human-manipulation [219–221]. Moreover, 
sensory pleasure -a cognitive experience- is suggested to have 
already emerged with reptiles (Iguana iguana) [222]. It is 
however unclear if non-Amniotes have emotions as fear. As 
emotions are also expressed by non-mammals’ Amniotes, we 
explore the concept of facial communication from an evolutionary 
point of view based on current knowledge and examine how far 
it might not only be performed by Mammals, but more broadly 
by Amniotes. 

Both Mammals and non-mammals’ Amniotes express 
meaningful facial communicative movements, as the headbob 
in parrots and lizards, the erection of facial feathers in jays and 
parrots or the dewlap in Anolis lizards [161], [180], [181], [211]. 
Social factors seem to influence the development of complex 
facial signals, as it has been demonstrated in Mammals with 
the group size, but also in lizards with sexual competition for 
example [216]. Facial movements are also used to enhance group 
cohesion, which is well described in Mammals [94]. Various 
other factors as mating systems [121,122] or the social context, 
such as the “audience effect” [154,155], seem to influence facial 
communication both in Mammals and non-mammals, even 
though the first phenomenon has only been studied in Primates. 
So, social factors’ influence on facial movements is not clustered 
to Mammals. However, it appears that sociality cannot explain 
alone complex communication signals [216]. 

Facial expressions might have been shaped by ecological 
factors too. For example, visual acuity is correlated with facial 
expressions complexity in Primates [95–97,100]. Some lizards, 
using facial ornaments, display an improved visual communication 
due to their evolution to an arboreal lifestyle [216]. But as there 

is few information on this topic, these examples cannot be 
generalized. For example, even species with poor visual acuity 
performed facial expressions [102,103]. Nonetheless, facial 
expressions are considered as one of the most accurate visual 
communicative tools and should necessitate a sufficiently large 
visual acuity. Thus, more studies should investigate the relation 
between visual acuity and the diversity of facial movements.

Despite the paramount communicative function of facial 
movements that seems quite similar among Amniotes, their 
use relies on more practical basis, the facial muscles. It is well 
known that Mammals are the only clade to possess cutaneous 
facial muscles. Yet, cetaceans’ facial mask is almost entirely rigid 
[85]. So, an entire infraorder seems to lack facial expressions 
and characterizing facial communication to mammals seems 
unjustified. Furthermore, birds share the orbicularis oculi with 
mammals, implied in eye-blink [162]. Blinking is described as 
a facial expression in all FACS (AU45), but even if reptiles and 
birds do eye-blink too [108], [167], it is not mentioned up to 
now as a facial expression. Moreover, it bears other roles than 
physiological function and may have a communicative value at 
least in birds, as its frequency varied according to the audience 
[218]. Thus, it would be inconsistent to consider it differently in 
non-mammal species, at least in birds. 

Some muscles involved in facial communication in non-
mammals Amniotes have a common embryologic origin with 
the cutaneous muscles of the mammalians, as the ceratohyoid 
muscle in Anolis dewlap [182]. Considering the common 
origin with mammals’ cutaneous muscles and its use for visual 
communication, we suggest that dewlap might be considered 
as an equivalent of facial expression in non-Mammals. The fact 
that Mammals do not possess such ornament should not be an 
argument to exclude the dewlap movement of facial expressions 
category. It should be noted that each movement is not 
automatically shared by all species. For example, several facial 
expressions involving whiskers are only described in catFACS 
[107], even if other animals for which a FACS exists -as Primates- 
do not possess them. So, the exclusivity of a facial feature in one 
species should not be an argument to reject it as a valuable facial 
communication. 

In the same way, to reject a facial communicative movement 
because they are produced by non-cutaneous muscles does 
not seem justified. Indeed, several masticator muscles -non-
cutaneous- like the masseter are involved in facial action units 
described in FACS (AU26 Jaw drop) [15]–[21], which can lead 
to the “open-mouth” expression, well described in Primates’ 
social communication [58,129,134]. To select which species can 
perform facial communication based on the muscular innervation 
is not a justified argument too. Indeed, mammals’ cutaneous 
muscles are innervated by the CN VII [34] and the non-mammals’ 
muscles are innervated by other cranial nerve, such as the CN 
V [162,182,183]. But, as it has been developed earlier, muscles 
innervated by other nerves (as the masticatory ones) can bear a 
communicative value, and so in non-mammals’ Amniotes species 
too. Thus, facial communication should not be clustered to 
species with specific muscles or muscles’ innervation.

Another feature of a communicative role of facial muscles 
in Amniotes could be revealed by some neuroanatomical 
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characteristics such as brain nuclei. Their size increases with 
the diversity of facial movements in Primates [67,68]. Similarly, 
in lizards, the number of motoneurons controlling the dewlap 
movements increases with the frequency of its use [191]. 
In birds, no such phenomenon has been described related 
to facial movements [189], yet, birds’ relative brain size is 
correlated with their level of sociality, as mammals’ one. These 
correlations between neuroanatomical structures, sociality and 
facial movements might suggest that facial movements have 
an important communicative value not only in Mammals but in 
Amniotes too. However, more studies on non-mammal species 
are needed to conclude about it.

Furthermore, it should be noted that despite anatomical 
differences, mutual comprehension of facial communicative 
and emotional displays exists in interspecies interactions. 
For example, primates as well as domesticated species as 
dogs and horses can discriminate humans’ emotions of joy or 
anger from facial movements [223–226]. This interspecies 
understanding provides a strong argument for an integrative 
evolutionary approach of the topic of facial behavior. Some 
studies are suggesting they also used other signals, as odors 
[227,228], so emotional recognition might be multimodal. The 
respective contribution of these items is not well understood 
and should also be further investigated. The ability to recognize 
humans’ emotions might be an important tool in human-animal 
relationship, including animal assisted therapies. 

CONCLUSION
From this review, we propose that facial communication is 

not clustered to Mammals and to facial expressions. Evidence 
comes from the presence of movements with communicative 
value in non-Mammals, which do not express stricto sensu facial 
expressions as they have a rigid facial mask. We propose the 
following definitions: movements are visible displacements of 
body segments or tissues. They are motor actions that do not need 
cognitive and emotional implication, while behaviours require 
the interpretation of environmental or internal stimuli, as the 
presence of an audience or emotional experiences. Behaviours 
are movements that can be involved in social communication. 
So facial behaviours are not clustered to Mammals but might 
be largely expressed among Amniote’s species. Whereas facial 
expressions are facial behaviours generated by the contraction of 
cutaneous facial muscles, innervated by the CN VII, and thus only 
expressed by Mammals.
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