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Abstract

Protein S (PS), a γ-carboxyglutamate-containing serum protein, was unexpectedly 
discovered in 1977. Soon after its discovery, PS gained the attention of researchers 
because of its physiological importance, acting as a multifunctional protein at the 
intersection of blood coagulation, inflammation, and other cellular processes. Protein 
S functions as an anticoagulant by directly inhibiting procoagulants, such as Factor 
Xa (FXa), FVa, and FIXa, while also serving as a cofactor for anticoagulants such 
as Activated Protein C and Tissue Factor Pathway Inhibitor. By associating with C4b 
binding protein (C4BP), PS has also been shown to minimize the effect of inflammation. 
Finally, PS promotes efferocytosis through TAM family protein kinase receptors. 
Mutations in the PS gene cause pathological conditions such as deep vein thrombosis 
and hereditary ischemia. In this review, we summarize studies regarding the multiple 
functions of PS.

ABBREVIATIONS
SHBG-Sex Hormone Binding Globule; TFPI- Tissue Factor 

Pathway Inhibitor; APC- Activated Protein C PS- Protein S; TAM- 
Tyro-3, Axl, Mer; VSMCs- Vascular Smooth Muscle Cells C4BP- 
C4b Binding Protein

INTRODUCTION
In 1977, while purifying Protein C from bovine plasma 

investigators discovered a new γ-carboxyglutamate (Gla)-
containing protein which they named Protein S (PS) after Seattle 
the city of its discovery [1]. In the ensuing years, PS has been 
established as a protein with a wide array of functions.

PS is secreted primarily by endothelial cells, megakaryocytes, 
hepatocytes, and Leydig cells [2]. These cells initially synthesize 
PS as a 676 amino acid precursor protein [3], which, upon 
cleavage of the signal and pro peptides, matures to a 635 amino 
acid protein composed of an N-terminal Gla domain, a thrombin- 
sensitive region (TSR), four Epidermal Growth Factor (EGF)-like 
domains, and a sex hormone binding globule (SHBG) [3]. Protein 
S circulates in the blood at a concentration of 350 nM, 60% of 
which is bound to complement component 4 binding protein 
(C4BP), with the other 40% denoted as ‘free’ [4]. Both forms 
of Protein S can act as anticoagulants, and their deficiency is 
associated with deep vein thrombosis and ischemic stroke [8,9]; 
furthermore, murine PS knockouts have been shown to result in 
embryonic lethality [5-7].

DISCUSSION AND CONCLUSION

Anticoagulant function of Protein S

Protein S is an anticoagulant that prevents clot formation, 
while aiding in clot localization [10]. The anticoagulant activity of 
PS is exerted, either, by its direct interaction with procoagulants 
and their active forms, or by its co- enzymatic function with other 
anticoagulants (Figure 1).

Co-enzymatic function of Protein S

Protein S is reported to be a cofactor for activated protein 
C (APC) and for Tissue Factor Pathway Inhibitor (TFPI) [10]. 
Protein S enhances the function of APC by a factor of 3-10, and PS 
stimulates the activity of TFPI by a factor of 3-5 [11-13].

Cofactor for Activated Protein C: Protein C is a zymogen, 
which is activated on the surface of endothelial cell membranes 
by cleavage by thrombin in the presence of thrombomodulin [14]. 
Activation of Protein C results in a negative feedback mechanism 
that regulates the coagulation cascade, because Activated Protein 
C (APC) inhibits Factor Va (FVa) and Factor VIIIa (FVIIIa) by 
cleavage [15-17]. APC cleaves the FVa heavy chain at Arg506, 
producing a partially inactive intermediate; further cleavage of 
FVa at Arg306 results in complete inactivation [16,17].

When not bound to PS, the proteolytic activity of free APC 
is weaker [18]. Studies of the interaction between PS and APC 
have revealed that the PS TSR, EGF1, and EGF2 domains are 
essential for its APC cofactor function; PS lacking its LG domains 
still functions as an APC cofactor in vitro but not in plasma [20]. 
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Furthermore, during coagulation, the APC cofactor activity of PS 
is down- regulated by FXa-mediated cleavage of PS within the 
TSR [19]. Ultimately the significance of the cofactor function of 
PS in regulating APC activity is undermined by the fact that APC 
can function without PS.

The 40% of free plasma PS was considered to be the only 
PS form that could act as a cofactor for APC, but later studies 
showed that PS bound to C4BP could also function in this manner 
[21]. The PS-C4BP complex is a weak cofactor for APC in vitro, 
whereas the same complex acts more effectively in plasma. By 
demonstrating that PS-Heerlen mutant (Ser460Pro) disrupts a 
consensus glycosylation site of PS, thereby destabilizing its free 
form, it was shown that the PS-Heerlen mutant bound to C4BP is 
stable and continues to retain the anticoagulant function of PS. 
Further work also challenged the APC cofactor function of PS in 
baboon models, wherein antibody-mediated blockage of APC did 
not inhibit the antithrombotic function of PS [22]; this suggested 
that PS functions in ways other than as a cofactor of APC.

PS as a cofactor for Tissue Factor Pathway Inhibitor 
(TFPI): Tissue Factor Pathway Inhibitor is a single-chain 
glycoprotein with Kunitz- type proteinase inhibitor domains; 
TFPI circulates at trace amounts in plasma (2.5 nM) [23]. Tissue 
Factor Pathway Inhibitor employs a two-step mechanism to 
modulate the tissue factor-mediated coagulation cascade [24]. 
The Kunitz-2 domain of TFPI binds directly to the active site of 
FXa, and this complex forms a quaternary complex with a TF-
FVIIa complex [24]. PS interaction with the Kunitz- 3 domain 
and/or the C-terminal tail of TFPI enhances the TFPI and FXa 
interaction in the initiation phase of coagulation. However, the 

PS-TFPI complex inhibits only the FXa that escapes the VIIa-TF-
Xa-TFPI complex, [25,26].

Moreover, cofactor activity of PS in regulating TFPI could not 
be verified in vivo since mouse plasma lacks TFPI.

Direct inhibition of Protein S with procoagulants and 
their active forms

Plasma contains a number of procoagulants and their 
cofactors, which are vital for proper clot formation [27, 28]. FIX, 
FVII and FX are the major procoagulant zymogens, whereas FVa 
and FVIIIa act as cofactors for FXa and FIXa, respectively [29-33]. 
Recent evidence shows that PS can interact directly with some 
procoagulants and their cofactors, thereby inhibiting thrombin 
generation and clot formation [34-38].

PS interaction with FV, FVa and FXa: Factor V is a 330-kDa 
single-chain polypeptide secreted by hepatocytes, circulating in 
plasma as a procoagulant at a concentration of 20 nM [32,33].

Thrombin activates FV to FVa by cleaving at FV Arg709, 
Arg1018, and Arg1545 [32,39-41]. Factor Va binds with high 
affinity to FXa and forms the prothrombinase complex [41]. 
Interestingly, the zymogen form of FV can act as an anticoagulant 
by forming a complex with Protein S to enhance the PS-APC- 
mediated proteolytic inactivation of FVa [38]. In addition to 
working cooperatively with FV, Heeb et al., demonstrated that 
FVa directly binds in a calcium-dependent manner to immobilized 
zinc-containing PS through the heavy chain of FVa, with a Kd of 
33 nM [36].

Figure 1 Mechanisms of PS-mediated anticoagulation. A1) Factor IXa, in the presence of its co-factor FVIIIa, activates FX to FXa. A2) Protein S directly binds to activated 
FIXa and inhibits the activation of FX. B1) FXa and FVa form the prothrombinase complex that converts prothrombin to thrombin. B2) Protein S in the presence of zinc 
directly binds FVa and FXa and inhibits their combined activity. C) Protein S serves as a cofactor for Activated Protein C and enhances the cleavage of FVIIIa and FVa. D) 
Protein S enhances TFPI-FX complex formation by serving as a cofactor for TFPI; the TFPI-FX complex inhibits TF- FVIIa.



Central
Bringing Excellence in Open Access





Majumder et al. (2016)
Email: 

JSM Biochem Mol Biol 3(1): 1014 (2016) 3/9

Factor X is a 59-kDa glycoprotein composed of a Gla 
domain, two EGF- like domains, an activation peptide, and a 
catalytic domain [42,43]. Factor X circulates in the plasma at a 
concentration ~130 nM [42,43] and upon clotting, FIXa-FVIIIa or 
FVII-TF complexes activate FX [43-45]. Upon activation, Factor 
Xa binds to FVa and this ‘prothrombinase’ complex converts 
prothrombin to thrombin [46,47]. Heeb et al., demonstrated 
that FX can directly interact with immobilized, zinc-containing 
PS; furthermore, competitive binding studies demonstrated that 
zinc-containing PS inhibits FX with a Ki of ~25 nM [37].

However, physiologically, zinc is not associated with plasma 
PS, and a novel isolation procedure was used to prepare the zinc-
containing Protein S, suggesting that the physiological importance 
of zinc-containing PS requires further evaluation [37,48].

PS directly interacts with FIXa and inhibits its activity: 
Factor IX is a 55-kDa single-chain polypeptide zymogen that 
circulates in the plasma at a concentration of 70-90 nM and is 
activated by FXIa [49,50]. In the presence of FVIIIa, FIXa activates 
FX to FXa, and this activation step plays a key role in the intrinsic 
pathway of blood coagulation [28].

Chattopadhyay et al., demonstrated that FIXa in the absence 
or presence of FVIIIa interacts with PS with a Kd of 40 nM, and this 
interaction inhibits the activation of FX. Low levels (0.4 pM) of TF 
directs thrombin generation through the intrinsic pathway, and 
thrombin generation is inhibited (~92%) by the addition of PS to 
the PS-deficient plasma, revealing the physiological significance 
of PS- mediated FIX inhibition [51]. Further, Chattopadhyay et 
al., showed that PS inhibits the intrinsic Xase complex (FIXa-

FVIIIa complex) by inhibiting FIXa in the presence or absence of 
FVIIIa [51]. This work explained the anticoagulant mechanism of 
PS in inhibiting one of the most important complexes in blood 
coagulation, the intrinsic Xase.

PS-C4BP COMPLEX
Complement component 4 binding protein is a 570-kDa 

glycoprotein that circulates in the plasma with a concentration 
of ~350 nM [4,52]. C4BP exists in several isoforms that differ 
in their combination of alpha and β chains; ~80% of circulating 
C4BP consists of seven identical alpha chains (70 kDa) and one 
β chain (45 kDa) [52]; C4BP forms a high affinity complex (Kd 
~ 100 pM) with PS in 1:1 stoichiometric ratio by means of an 
interaction mediated by its β-chain [4,53,54].

The PS-C4BP complex links the coagulation cascade and the 
inflammation pathway by interfering with the anticoagulant 
function of PS by modulating its APC cofactor affinity [4,53,54]. 
PS enhances C4BP binding to the phosphatidylserine moieties 
of apoptotic cell membranes, by means of its Gla domain; this 
results in the inhibition of inflammation in the vicinity of dying 
cells (Figure 2) [4,53,54].

PROTEIN S IN THE TYRO-3, AXL, MER (TAM) 
FAMILY RECEPTOR SIGNALING CASCADE

Tyro-3, Axl, and Mer receptors are tyrosine kinases that are 
grouped in a family based on their sequence similarities [61]. 
These receptors share a common architecture having N-terminal 
immunoglobulin-like (IG) domains followed by fibronectin-
like domains and a single-pass alpha helical domain [61]. The 

Figure 2 The PS-C4BP complex is essential for inhibiting inflammation. C4BP is a multimer formed by seven alpha chains and one beta chain crosslinked by cysteine 
disulfide bonds; the C4BP beta chain binds to the sex hormone binding globulin domain (SHBG) of PS. PS-C4BP further binds to the phosphatidylserine in the apoptotic 
cell membrane and inactivates complements such as C3a and C4a. Streptococcal pyrogenic exotoxin B (SPEB) inactivates the PS-C4BP complex during streptococcal 
infection. SPEB cleaves PS within the SHBG domain, preventing the PS-C4BP complex from binding the membrane.
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receptors also contain an extracellular domain that binds ligands 
such as PS and the growth arrest-specific 6 (GAS-6) protein 
[62]. TAM family receptors are expressed in a wide variety of 
cells, including cells of the immune, nervous, reproductive, and 
vascular systems [2]. These receptors transduce a wide range 
of signals, e.g., signals for cell survival, metastasis, apoptosis, 
and differentiation. PS-TAM receptor signaling is involved in 
processes such as regulation of inflammation, vasculogenesis, 
angiogenesis, and metastasis (Figure 4) [63-67].

The Gla domain of PS binds to the phosphatidylserine 
present in the membranes of apoptotic cells and, simultaneously, 
the PS SHBG domain forms a bridge with a TAM receptor on 
macrophages [68,69]. This bridge enhances phagocytosis of 
the apoptotic bodies, thereby preventing exposure of antigens 
from the apoptotic cells [67-69]. PS-TAM signaling inhibits 
inflammation by inhibiting p38 mitogen activated protein 
kinase (MAPK), extracellular signal regulated kinase-1 (ERK1)/
ERK2, nuclear factor-kB (NFkB), tumor necrosis factor (TNF)-
receptor-associated factor 3 (TRAF3) and TRAF6, while also 
activating protein-1 interferon regulatory factors such as TNFa 
and IL6 [70]. Toll- like receptor signaling is blocked by inhibition 
of the activities of all these kinases and factors [2,71]. TAM 
signaling-mediated inhibition of inflammation further enhances 
expression of suppressors of cytokine signaling (SOCSs), and 
SOCSs play a key role in regulating inflammation [2,71]. PS-TAM 
signaling also protects the integrity of the blood-brain barrier 
(BBB) during ischemic/hypoxic stroke [72]. By activating the 
PI3/AKT pathway, PS-Tyro-3 signaling protects neurons from 
excitotoxic injury, and this signaling enhances phosphorylation 
of antiapoptotic proteins such as Bcl-2 and Bcl-XL [73]. Further, 
the association of PS deficiency with ischemic stroke indicates 
the importance of PS in protecting the BBB and neurons [9].

Protein S knockout mice die due to defective extension and 
remodeling of the primary vascular network, which suggests 
that PS plays a vital role in vasculogenesis [5]. Similarly, PS-Axl 
expression in vascular smooth muscle cells (VSMCs) is essential 
for VEGF-α induced vascular permeability and angiogenesis 
[74,75]. In contrast to the role of PS in VSMCs, PS-Mer signaling 
antagonizes VEGF-α signaling on endothelial cells and further 
inhibits angiogenesis [76].

The role for PS in tumor metastasis is controversial [67]. PS 
deficiency caused by an A > G nucleotide substitution at position 
1907 is associated with colorectal cancer, whereas PS and TAM 
receptor expression are unregulated in a variety of cancers 
[67,77,78]. A role for PS over expression in cancer cells is yet to 
be determined [67].

GENE REGULATION AND PS DEFICIENCY
The PS gene is located on Chromosome 3 at 3q11.2, and 

the gene spans 101 kb of genomic DNA [79,80]. The PS gene is 
composed of 15 exons and 14 introns [80,81]. The 5’ promoter 
region of the PS gene contains binding sites for transcription 
factors such as Sp1, estrogen receptor (ER), progesterone isoform 
B (PR-B), FOXA2, CRE/ATF, NFY, STAT3, and C/EBPb (Figure 3) 
[67,82-86].

Transcription factor Sp1 has four binding sites within 370 
bp proximal to the PS promoter [83]. Sp3 also binds to the Sp1 
DNA consensus sequence of the PS gene promoter [83]. Thus, it 
has been hypothesized that dysregulation of Sp1 in cancer cells 
causes PS over expression [83,86,87].

PS is also regulated by hormones such as progesterone 
and estrogen [87]. Progesterone promotes PS expression by 
25% [67,84], while Estrogen down-regulates PS expression 
by promoting ER binding to promoter-distal GC-rich motifs of 
the PS gene [85]. ER binding to the GC rich motif recruits the 
RIP140 and HDA3 complexes that deacetylate histones; in turn, 
expression of PS ceases, and this repression is responsible for the 
deep vein thrombosis (DVT) that occurs in pregnant women and 
women using estrogen-containing contraceptives [67,85]. PR-B 
promotes PS expression by binding directly to the PS promoter at 
a consensus sequence between bp -397 and -417 [84].

Interleukins play major roles in regulating inflammation. 
Interleukin 6 (IL6) stimulates transcription factor STAT3; STAT3 
binds to the PS promoter at -220 bp and promotes PS expression, 
which plays a vital role in regulating inflammation [67,88]. PS 
expression and function are altered by mutations in the PS gene 
[79].

To date, more than 200 mutations in PS have been mapped; 

Figure 3a Functions of PS-TAM receptor signaling. A) The Gla domain of PS interacts with phosphatidylserine on the apoptotic cell membrane, and the SHBG domain of 
PS forms a crosslink with a TAM receptor on a macrophage. This crosslink promotes phagocytosis of the apoptotic cell.
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Figure 3b PS-TAM signaling activates the MERK/ERK pathway, which, in turn, activates NFkb, TARK6, and TARK3 to promote expression of cytokines and suppressors 
of cytokine signaling (SOCSs). Enhanced SOCSs expression blocks Toll-like receptors. In neurons, PS-TAM signaling activates the PI3 and Akt pathways, which, in turn, 
phosphorylate Bcl2 and Bcl-XL; phosphorylated Bcl2 and Bcl-XL promote cell survival.

Figure 3c PS-Axl enhances VEGF1a signaling and enhances angiogenesis in vascular smooth muscle cells, whereas PS-MER antagonizes VEGF signaling in endothelial 
cells.

these mutations have been found to cause three classes of PS 
deficiency [89,90]. In type I deficiency, the total amount of serum 
PS is decreased, in type II deficiency, the total PS amount is 
unchanged, but the APC cofactor function of PS is altered, and, in 
type III deficiency, the total PS amount is unaltered, but both free 
PS and its cofactor activity are decreased [79].

Several mutations in the PS gene, which are responsible for PS 
deficiency and altered PS function, are shown in Figure (5). A C >T 
mutation at -168 in the promoter region alters Sp1 transcription 
factor binding, which is responsible for a 38% reduction in free 
PS and a 68% reduction in total PS [91]. Mutations pPro15His and 
pVal18Glu in the signal peptide prevent PS secretion and lead to 
degradation of PS in the cytosol [92,93]. Mutations in the pro-

peptide (Arg40Leu and Arg40Leu) cause type II PS deficiency 
because the mutations prevent maturation of the protein [94]. 
Mutations in the Gla domain alter PS function and cause misfolding 
of the protein, thereby destabilizing PS [79]. An example of a 
Gla domain mutation is Phe72Cys that creates a destabilization 
cavity in the Gla domain and promotes PS degradation [95-97]. 
The Glu67Ala mutation prevents carboxylation of Glu and causes 
type I PS deficiency [96]. The pGly52Asp mutation causes a 5-fold 
loss of affinity for phospholipids and a similar reduction in PS 
anticoagulant activity [98]. Similarly, the pAla68Asp mutation 
causes loss of Ca

2+
-induced phospholipid interaction [96]. 

Mutations Arg111Ser, Arg101Cys, p.Arg90His, and Arg90Cys 
prevent thrombin-mediated cleavage of the PS TSR, and these 
mutations impair the APC cofactor activity of PS [19,95,99,100].
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Mutations: Cys121Tyr, Cys154Phe, Cys175Phe, Cys186Tyr, 
Cys228Ser, Cys241Ser, Cys265Trp, and Cys267Ser cause 
destabilization of PS by impairing disulfide bond formation in the 
EGF domains [79]. The Asn258Ser mutation impairs Ca

2+ binding 
to the EGF1 domain, causing misfolding of the protein such that 
PS secretion is reduced by 70%. Similarly, the APC cofactor 
function of PS is reduced by 50% in Glu204Gly, Asp245Gly, and 
Thr144Asn mutants [101].

Mutations in the LG domains are also common; for example, 
mutations in Cys288-Cys568 of the LG domains destabilize PS 
and lead to impaired secretion of PS [79].

CONCLUSION
We began this review by noting that the “S” in Protein S stands 

for the city in which the protein was discovered. We conclude 
this review suggesting that “S” also stands for survival because 
knockout of the PS gene is embryonic lethal, and mutations in the 
PS gene cause pathological conditions such as DVT and hereditary 
ischemic stroke. Protein S is involved in many cellular activities, 
including inhibition of the blood coagulation cascade, inhibition 
of inflammation, clearance of apoptotic bodies, angiogenesis and 
cell survival. Protein S functions as an anticoagulant by inhibiting 
FIXa and by serving as a cofactor for APC and TFPI. Although the 
minimal domain(s) of PS required for its anticoagulant function 
is/are not known, identification of such a minimal domain will 
enable pursuit of therapy for thrombophilic patients. PS-Axl 
enhances VEGF signaling in VSMCs, whereas PS-Mer antagonizes 
the VEGF signaling in endothelial cells; these opposite effects 
highlight the existence of functional diversity in PS-TAM receptor 
signaling. This diversity is waiting to be probed in greater detail.
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