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Abstract

A volume of epidemiological, experimental and clinical data reveals the beneficial 
effect of omega 3 class of fatty acids in a variety of human ailments. However, 
conflicting results do exist and long term use of these highly unsaturated fatty acids has 
been cautioned due to its susceptibility to oxidative changes. Enzymatic oxidation of 
well-known omega 3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic 
acid (EPA) is known to produce 4-hydroxy 2-hexanal (4-HHE), an alpha beta 
unsaturated aldehyde. The molecule has been shown to protect endothelial cells 
through Nuclear factor related erythroid factor 2 (Nrf2) mediated HO-1 expression 
while induce toxicity in neuronal cells. Also high levels of HHE protein adducts are 
reported in neuronal degenerative tissues. Therefore, it is likely that omega 3 fatty 
acids may have detrimental effect rather than beneficial effects when cellular/tissue 
redox status as well as fatty aldehyde detoxification system is challenged. The present 
review aims to open up a discussion on the possible health concerns upon long term 
consumption of omega3 fatty acids.

ABBREVIATIONS
NRF2: Nuclear factor erythroid 2-related factor 2; 4-HHE 

4: Hydroxy 2 Hexenal; HO-1: Heme Oxygenase 1; DHA: 
Docosahexaenoic Acid; EPA: Eicosapentaenoic Acid

INTRODUCTION
Omega 3 fatty acids are essential poly unsaturated fatty acids 

of high therapeutic value. Several epidemiological, experimental 
and clinical studies have brought light to the health effects of 
these molecules [1-20], (Table 1). Among the various class of 
compounds, long chain unsaturated docosahexaenoic acid (DHA) 
and eicosapentaenoic acid (EPA) are the most studied (Figure 1 a 
and b). Currently EPA and DHA together with vitamin E have been 
in market and 2-3g daily dose has been used for the treatment 
of familial hypertriglyceridemia, psychological disorders and 
other neurodegenerative conditions [21,22]. It is claimed that 
omega 3 fatty acid tablets bring down the TG level to 500 mg 
dL in familial triglyceridemia patients having 2000 mg/dL TG 
in their blood. However, other medications are also needed to 
reduce the level of TG to almost near normal. Eventhough, recent 
studies have reported the possible health hazards of an aldehyde 
oxidation products of omega 3 fats, 4-hydroxy hexenal. The pro 
inflammatory and toxic insults of these aldehyde molecules thus 
raise concern over the long term use of these essential fatty acids.

Mechanistic basis for the biological effect of Omega 3 
fatty acids

When very long chain omega 3 fatty acids are ingested, 
there is high incorporation of EPA and DHA into membrane 
phospholipids at the expense of arachidonic acid (AA) [23,24], 
which may alter the physical characteristics of cell membrane 
[25], and affects the function of cells. In vitro studies have 
demonstrated that replacement of omega-6 fatty acids with 
omega 3 fatty acids may cause a decreased cellular response to 
mitogenic and inflammatory stimuli via reduced proliferation of 
inflammatory cells, expression of Cox-2 and release IL-6 due to 
lower generation of PGE2 than PGE3 [26]. 

It has been also reported that omega 3 fatty acid change the 
lipid raft composition thereby decreasing epidermal growth 
factor receptor expression in breast cancer cells [25], suggesting 
a possible mechanism of inhibition of cell proliferation. The use of 
these polyunsaturated fats as an adjuvant in chemotherapy is also 
suggested [27]. However, in cancer prevention or chemotherapy, 
the benefits have been limited to the improvement in quality life 
of patients [28], and even some studies raised concerns of being 
developing drug resistance [29].

The recent information on the anti-tumour properties of 
omega 3 fatty acid relies on its oxidative stress inducing potential 
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Table 1: Health benefits of omega 3 fatty acids.
Effect Mechanism Author Year
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Omega 3 fatty acids and their role in vascular endothelial tissues Zanetti, Grillo [1] 2015
Relaxation of the vascular smooth muscles by stimulating the nitric oxide 
synthesis from endothelial cells Loscalzo [2] 2013

Promoting endothelial repair and reducing plasma lipids. It is also likely 
that the replacement of saturated fatty acids from cell membranes of 
cardiomyocytes for omega 3 fatty acids may account for the antiarrhythmic 
effect with an average decrease of 5.8 and 3.3 mm Hg for systolic and diastolic 
blood pressure

Mori and Woodman [3] 2006

DHA changes the distribution of LDL particle sub-fractions in favor, of less 
atherogenic, large, buoyant LDLs

Mori, Burke [4] 2000

Omega 3 fatty acids as therapeutic options for hypertriglyceridemia Ito [5] 2015
Omega 3 fatty acids promote macrophage reverse cholesterol transport in high 
fat fed hamsters Kasbi Chadli, Nazih [6] 2015

Reduce TAG production by increasing fatty acid oxidation via peroxisomal 
β-oxidation Vrablik, Prusikova [7] 2009

Reduce plasma concentration of fibrinogen Vanschoonbeek, Feijge [8] 2004
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Breast cancer and metastasis Chamras, Ardashian [9]
Abdi-Dezfuli, Froyland [10]

2002

1997
DHA and EPA inhibit pancreas cancer cell growth by down regulating Wnt/
beta–catenin signaling Corsetto, Montorfano [11] 2011

Omega 3 fatty acids down regulate malignancy potential of colon cancer cells Cockbain, Volpato [12]
Chamberland and Moon [13]

2014

2014
Omega 3 fatty acid and their implications in multi targeted cancer therapy D’Eliseo and Velotti [14] 2016

Omega 3 fatty acids in management of gastrointestinal cancer Eltweri, Thomas [15] 2016

N
eu

ro
de

ge
ne

ra
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n Supplementation of DHA results in neuro protection in Parkinson’s disease Bousquet, Gue [16] 2011

Reduce neuro-inflammation through GPR120 mediated mechanism Wellhauser and Belsham [17] 2014
Non esterified DHA increase levels of neuro protection D1
Omega 3 fatty acid induce cerebral angiogenesis to provide long term 
protection for neurons

Orr, Palumbo [18]

Wang, Shi [19]

2013

2014
Omega 3 fatty acids as adjuvant s for Alzheimer’s disease treatment Casali, Corona [20] 2015

Figure 1 Structure of two common omega 3 fatty acids; docosahexaenoic acid (a) and Eicosapentaenoic acid (b).

[30-32]. Apoptotic events in cancer cell lines induced by DHA 
or their oxidation products are known to be mediated through 
the generation of free radicals such as reactive oxygen and 
nitrogen species. Mitochondrial ROS formation was elevated in 
DHA treated cancer cells, and the role was further confirmed 
by the antioxidant pretreatment of the cells which reduced the 

autophagy and apoptosis induction [33]. In the human breast 
cancer cells (MCF7), DHA treatment has increased the oxidative 
modification of proteins and accumulation of RNS which is 
indicated by the presence of 3-nitrotyrosine [34]. Gu, Wu [35], 
have suggested that omega 3 fatty acids affects AKT ‘a serine –
threonine protein kinase’ signaling through alteration of PIP3 and 
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AKT localization. This result in arrest of cell growth, proliferation 
and thereby induce  apoptosis.

Risks

Apart from these beneficial effects, contradictory results also 
exist. High doses of omega 3 fatty acids used in the treatment of 
hyper triglyceridemia, LDL levels rise by 10%, this effect being 
even more pronounced in patients with extreme TG elevations 
at baseline [36]. DHA, not EPA has been reported to cause this 
adverse effect. However, it has been claimed that increase in 
the LDLc fraction during omega 3 fatty acid intake may not be 
hazardous as they are beneficial in nature. But, as omega 3 fatty 
acid are prone to oxidative modifications, their increase in LDLc 
may lead a subsequent hike in oxidized LDL, which is a known 
risk factor for atherogenesis and other lipid related disorders. 
Substantiating this assumption, studies by Whitman, Fish [37], 
demonstrated that incorporation of omega 3 fatty acid in an 
atherogenic diet increased the LDL oxidation in vitro. Several 
other studies suggests the increased risk of type 2 diabetes 
mellitus during the high omega 3 fatty acid intake [38].

Center for Food Safety and Applied Nutrition, USA has reported 
the known as well as suspected risks of docosahexaenoic acid 
and eicosapentaenoic acid consumption in excess of 3 grams per 
day. It includes the possibility of increased incidence of bleeding, 
hemorrhagic stroke, oxidative modifications of these fatty acid 
molecules into biologically active signaling molecules, elevated 
apoproteins levels which are associated with LDL cholesterol and 
reduced glycemic control among diabetic and hyperlipidemics.

The immediate oxidation products of omega 3 fats are 
epoxides, peroxides and aldehydes, which are known to be 
involved in oxidative stress and damages. Trans 4-hydroxy 
hexenal (HHE) is a product of omega 3 fatty acid oxidation 
similar to hydroxy nonenal (HNE) omega 6 fat derivative [39], 
and have roles as an active biochemical mediator. Recent reports 
by Calzada, Colas [40], shown that consumption of unoxidized 
DHA over a period of 8 weeks increase the serum levels of 4-HHE. 
Further, gastrointestinal digestion of fish and cod oils resulted in 
the formation and accumulation of HHE and other lipid derived 
aldehydes including malondialdehyde as well as HNE in the 
intestinal lumen [41,42]. Few studies have reported the beneficial 
effects of HHE in oxidative signaling by inducing Nrf2 mediated 
heme oxygenase 1 expression in the vascular endothelial cells 
[43]. Later studies in animals (C57BL/6mice) also observed 
similar results by Ishikado, Morino [44]. The implication of these 
results as a beneficial effect of HHE may not be accurate as the 
hike in Nrf2 could be only temporary in order to detoxify HHE. 
Overwhelming production of HHE for long duration may not 
support by short term hike in Nrf2expression. Further studies 
are needed to understand the dose dependent expression and 
duration of Nrf2 offering cytoprotection under HHE challenge to 
clarify this assumption.

It has also been reported that exposure HHE to human and 
murine vascular endothelial cells elevate Monocyte chemotactic 
protein (MCP-1), which is a proinflammatory molecule [45]. There 
are also reports that HHE induce p38 MAP kinase expression and 
thereby increase pro-inflammatory activity by up regulating the 
expressions of NF-kB, cyclooxygenase and inducible nitric oxide 

synthase. The study suggests that these mechanisms promote 
epithelial mesenchymal transition in renal tubular epithelial cell, 
HK-2 [46]. Similar observations have also been made by Bae, Joo 
[47], where HHE found to induce inflammatory gene expression 
with concomitant reduction in Nrf2 based antioxidant defense in 
kidney cells. Supporting the above, Lee, Je [48], reported that HHE 
induces pro-inflammatory cytokine expression and apoptosis in 
vascular endothelial cells. In rats fed with oxidized omega 3 fatty 
acids, increased accumulation of HHE in blood has been reported, 
which in turn resulted in the increase in serum inflammatory 
markers such as NF-kB and oxidative stress marker glutathione 
peroxidase expression in intestinal tissues [49]. Similar results 
are shared by Bradley, Xiong-Fister [50], as HHE-protein adducts 
are elevated in several of the neurodegenerative disorders, 
which is an independent risk factor for the progression of 
these disorders. In addition to these, a latest study by  Grimm, 
Haupenthal [51], indicated that oxidized DHA exposure to 
cortical neuronal cells increases the levels of β-amyloid peptide 
and amyloidogenic amyloid precursor protein (APP), which are 
involved in the progression of neurodegenerative disorders 
including Alzheimer’s disease. HHE has also been shown to 
be neurotoxic in primary cell cultures mediated through GSH 
depletion [52]. Since the oxidized products of omega 3 fats, such 
as HHE can induce proinflammatory condition in the body and 
precipitate in neuronal degeneration, long term consumption of 
omega 3 fats need to be reconsidered.

Fatty aldehyde dehydrogenases and aldehyde 
detoxification

However, aldehydes such as HHE are usually detoxified by a 
well-defined aldehyde detoxification system in the body. These 
include aldehyde oxidase, aldehyde keto-reductase and aldehyde 
dehydrogenase. Fatty aldehyde dehydrogenase (or long-chain-
aldehyde dehydrogenase), belong to the oxidoreductase family 
of NAD(P)+-dependent enzymes are encoded in the ALDH3A2 
gene on chromosome-17 is an aldehyde dehydrogenase enzyme 
that remove toxic aldehydes generated by the metabolism of 
alcohol and lipid peroxidation. GSH which can form adducts with 
aldehydes and enhance their removal are the determining factor 
of this secondary oxidative and carbonyl stress. The ectopic 
expression of FALDH significantly decreased ROS production 
in cells treated by 4-hydroxynonenal (4-HNE), suggesting 
that FALDH protects against oxidative stress associated with 
lipid peroxidation [53]. Further, it has been reported that 
polyunsaturated fatty acids up regulate the expression of fatty 
aldehyde dehydrogenase mediated by PPAR alpha, in order to 
reduce the oxidative stress induced by the aldehydes derived 
from these fatty acids [54].

It is considered that in young individual, endogenous 
antioxidant system and fatty aldehyde dehydrogenases are 
sufficient to protect against oxidative stress and protein carbonyl 
adduct formation. However in individuals, where the antioxidant 
system is challenged, the detoxifying system may also be 
dysfunctional due to overwhelming carbonyl molecules [55]. 
Similar condition prevail during aging where a higher incidence 
of several diseases including dementia, Parkinson’s disease, 
diabetes, cancer, and Alzheimer’s diseases are reported [56-58]. 
There need more studies to see whether these population can be 
benefited from omega 3-fat consumption.
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CONCLUSION
Despite the reported benefits of omega 3 fatty acids, 

there arise concerns that long term consumption may lead 
to deleterious effect in the body. This is mainly because of the 
emerging reports that oxidation of omega 3 fatty acid generates 
toxic aldehydes such as 4-hydroxy 2-hexenal which may cause 
chronic inflammation and also forms adducts with cellular 
macromolecules, eventually contributing to degenerative disease 
pathology. Therefore, it is suggested that the safety of these fatty 
acids in long term consumption need to be ensured.
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