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Abstract

Research in tissue engineering related to the improved processes using nanofiber 
scaffolds has seen considerable progress in the last decade in the regeneration and 
construction of a number of artificial tissue types. These designs are generally viewed 
from the perspective of possible sources for clinical implant and transplant materials. 
Nowadays, advancement in engineering of tissues often referred to as three-
dimensional (3D) cell culture provides enhanced activities owing to the 3D systems 
that readily imitate the in vivo setting for differentiated organs, than a typical 2D cell 
culture. Electro-spinning has been useful in producing nanofibrous scaffolds with large 
surface area and high pore volume that has the potential to mimic the morphology of 
a tissue extracellular matrix and hence promoting cell attachment, proliferation and 
differentiation. This review reports improved processes of tissue revitalization utilizing 
electrospunnanofibrous scaffolds. Different tissue engineering approaches including 
their advantages have been discussed. Also, various biomaterials from both synthetic 
and natural origin have been elaborated.

ABBREVIATIONS
PCL: Polycaprolactone; PLA: Polylactic Acid; PHB: 

Polyhydroxybutyrate; ECM: Extracellular Matrix

INTRODUCTION
It is becoming apparent that biomaterials have a critical role to 

play in the development and evolution of regenerative medicine. 
Tissue engineering is one interdisciplinary area that combines 
the principles of engineering and life sciences to advance 
biological substances that restore, maintain and revitalize the 
damaged tissues and organs [1-3]. To replace diseased, defected, 
or lost cartilage tissue and to restore natural tissue functions 
during regeneration process, biomaterial and biomechanical 
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considerations should be incorporated into a designed [4]. In 
the past, a large focus was on the development of biomaterials 
scaffolds for permanent tissue replacement. Among the few poly-
esters onto which human cells can either differentiate, divide 
or both, biocompatible and biodegradable PCL, PLA and PHB 
have been successfully electro spun into nanofiber scaffolds [1]. 
However, electrospun nanofibrous scaffolds are of great interest 
in tissue engineering due to their interconnected pores, their 
high surface area to volume ratio and architectural similarity to 
the native ECM [4]. These properties enable electrospun scaffolds 
to stimulate cell mitochondrial activities including cell adhesion, 
proliferation and differentiation but also improve spatial 
organization on the mesoscopic scale [1,5-9].

Tissue engineering approaches

Generally, engineered tissue is normally composed of 
primary or immortalized cells that are organized and cultured on 
the surface or inside a three-dimensional (3D) scaffold composed 
of either extracellular matrix proteins or analogous biomaterials 
[10]. However, utilizing regenerated tissue in biomedical research 
is to bridge the gap between traditional two-dimensional (2D) 
cell culture and the in vivo setting, thus, creating an environment 
that more closely represents the complex 3D structure of intrinsic 
tissue. In this tactic, the in vitro phenotype of cells in a 3D model, 
surrounded by extracellular matrix and other cells offers the 
ability to measure phenotypes that cannot be measured in 2D 
cell cultures and therefore in some cases will be more relevant 
to the in vivo situation [11,12]. Another powerful advantage of 
3D systems is to apply a high-throughput method to perform 
phenotypic measurement of traits typically limited to organ 
systems in analogous to 2D culture models. Furthermore, electro 
spinning has proven to be one of the significant methods for 
fiber-based 3D scaffold production [13].

Electrospun Nanofibrous Scaffolds

Polymeric biomaterials and their blends have been widely 
utilized in biomaterials research due to their biodegradability. 
PCL, a hydrophobic polymer, is a well-known biocompatible 
polymer that has been successfully fabricated via electrospinning 
technology [14-16]. Electrospun PCL blends include natural 
biopolymers such as gelatin, chitosan and lecithin. However, PCL-
gelatin blend can improve cell and neurite growth whereas PCL-
chitosan blend promotes cell growth and expansion [17].

DISCUSSION AND CONCLUSIONS
The presence of high porous networks and large surface 

area in the morphology of Electrospun nanofibrous scaffolds 
can promote cell regeneration, proliferation and differentiation. 
Various approaches for tissue regeneration using a 3D in vitro 
model surrounded by extracellular matrix offers the ability to 
measure phenotypes that cannot be measured in 2D cell cultures.
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