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Abstract

High-throughput experimental technologies in protein interaction continue to alter 
the study of current system biology, and a large-scale data can be available. Protein-
protein interactions on these experimental platforms, however, present numerous 
production and bioinformatics challenges. Some issues like the functional modules 
identification, protein complexes prediction, protein function prediction and disease-
related gene prioritization have become increasingly problematic in the analysis of 
protein-protein interaction networks. The development of powerful, efficient prediction 
methods for the structure and function analysis of protein interaction network is 
critical for the research community to accelerate research and publications. Currently, 
Network-based approaches are drawing the most attention in analyzing protein 
interactions.This review aims to describe the-state-of-art of network-based strategies 
and applications to infer protein interactions.

ABBREVIATIONS
PPI: Protein-Protein Interaction; PPIN: Protein-Protein 

Interaction Network

INTRODUCTION
Cells and organs are very complex systems because the 

interactions and the relations between cells to cells, DNA to 
RNA and RNA to proteins are very multifaceted and large 
in volume and length [1]. Of the different types of biological 
interactions, protein-protein interactions (PPIs) are one of 
the most significant, interesting and complicated interaction 
because some protein may work as an individual entity, but 
usually two or more proteins bind together and form a complex 
to carry out their biological functions. Biological processes are 
largely dependent on protein-protein interactions which carry 
out numerous functions, from DNA replication, cell replication, 
protein synthesis, and energy production to molecule transport, 
to various inter- and intracellular signaling. Several experimental 
methods have been developed to analyze protein-protein 
interactions, including yeast two-hybrid assay [2-5] protein chips 
[6], and mass spectrometry of purified protein complexes [7,8], 
which produce a vast amount of information and make it possible 
for researchers to study the biological activities systematically.

Currently, many protein interaction databases had been 
developed, which can support the establishment of interaction 
networks. With comparison to the analysis technologies 

investigated PPIs in the interaction partner or interface level [9-
12], protein-protein interaction network (PPIN) based-methods 
had caught researchers’ attentions for it can analyze the functions 
of proteins in a system biology level. For example, HParrishH et 
al., built a PPIN in 2007 for the bacterium Campylobacter jejuni, 
a food-borne pathogen and a major cause of gastroenteritis 
worldwide, and  identified a number of conserved sub-networks, 
biological pathways and putative essential genes that may be 
used to identify potential new antimicrobial drug targets for C. 
jejuni and related organisms [13].

Recently, some comprehensive reviews provided insights 
into the analysis and applications of protein-protein interaction 
networks [14-18]. This up to date review specifically focuses 
on four aspects: the functional modules identification, protein 
complexes prediction, protein function prediction and disease-
related gene prioritization.

Protein-protein interaction network (PPIN) analysis

Interaction networks can be represented as an interaction 
graph, where nodes represent proteins and edges represent pair 
wise interactions (an example can be found in Figure 1). The 
analysis of the network structure or topological properties of 
PPIN, such as distribution of node degree (number of incoming 
and outgoing edges per node), network diameter (average of the 
shortest distance between pairs of nodes), clustering coefficient 
(proportion of the potential edges between the neighbors of 
a node that are effectively observed in the graph), have led 
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to the observation of some apparently recurrent properties 
of biological networks: power-law degree distribution, small 
world, high clustering coefficients, and modularity[19-26]. The 
network whose degree distribution follows a power law also has 
been called as scale-free network, in which the fraction P(k) of 
nodes in the network having k connections to other nodes goes 
for large values of k as P(k) ~ k, where g is a parameter whose 
value typically ranges from 2 to 3. The character of small-world 
means that most nodes in PPIN are not neighbors of one another, 
but they can be reached from every other by a small numbers 
of hops or steps. Modularity is another characteristic feature of 
PPIN, where some protein groups are highly connected among 
them yet with lesser connections between modules.

Important functional modules identification

As one type of biological functional network, it is essential 
to understand the relationship between the organization of 
the network and its functions [19,27]. Therefore, clustering 
algorithms play an important role in the analysis of PIN, and 
can be used to uncover functional modules and obtain hints 
about cellular organization [28]. Brohee and Helden had 
evaluated four algorithms: Markov Clustering (MCL) [29], 
Restricted Neighborhood Search Clustering (RNSC) [30], Super 
Paramagnetic Clustering (SPC) [31], and Molecular Complex 
Detection (MCODE) [32] in 2006 and found that MCL and RNSC 
outperform SPC and MCODE in robustness where the test was 
implemented on unweighted graphs [19].

Regularized MCL (R-MCL), an efficient and robust variation 
of MCL, was proposed by HSatuluri et al., which can improve the 
accuracy of identifying functional modules by R-MCL’s regularize 
operation and balance parameter [33]. Shih and Parthasarathy 
developed a ‘Soft’ R-MCL (SR-MCL) algorithm, a new variation of 
R-MCL, which can identify overlapped clusters within PPIN [34].

Wang and Qian proposed a novel optimization formulation 
LCP2 which can identify both dense and sparse modules 
simultaneous based on protein interaction patterns in given 
networks through searching for low two-hop conductance 
sets by Markov random walk on graphs [35]. Moreover, they 

presented another two algorithms, SLCP2 and GLCP2, to identify 
non-overlapping and overlapping functional modules. The 
authors also proposed a new joint network clustering algorithm, 
AS Model, which can combine both topology and homology 
information [36].

Jia et al. proposed a dense module searching (DMS) method 
to identify candidate sub-networks or genes for complex diseases 
by integrating the association signal from GWAS datasets into 
the human PIN [37]. This method extensively searches for sub-
networks enriched with low P-value genes in GWAS datasets, 
and the experiments show the effectiveness of DMS by testing in 
two GWAS datasets for complex diseases, i.e. breast cancer and 
pancreatic cancer.

Wang et al., developed a fast algorithm, HC-PIN, based on the 
local metric of edge clustering value for hierarchical clustering, 
which can be used both in the un weighted network and in the 
weighted network [38]. The authors demonstrated that the 
usage of local metric in the algorithm HC-PIN not only improves 
its efficiency, but also enhances its robustness to the high rate of 
false positives in PIN. Meanwhile, HC-PIN can identify significant 
modules with low density.

Network-based protein complex prediction

A protein complex is a group of proteins that interact with 
each other at the same time and place, forming a single multi-
molecular machine [16,39,40]. In a network-based way, the 
problem of identifying protein complexes from PPI data can be 
formulated as that of detecting dense regions containing many 
connections in PPI networks, or regions with large weights in 
weighted networks [41].

Nepusz et al., proposed an algorithm, named Cluster ONE, 
clustering with overlapping neighborhood expansion for 
detecting potentially overlapping protein complexes from 
protein-protein interaction data [41]. In Cluster ONE, there is a 
concept of the cohesiveness score, a measurement can determine 
how likely a group of proteins form a complex, had been calculated 
and it uses a greedy growth process to find protein complexes. 
The authors also found that taking into account network 

Figure 1 C. jejuni protein interaction networks. (a) The C. jejuni interaction dataset (CampyYTH v3.1), and (b) the higher confidence subset. In 
each case most of the proteins (square nodes) are connected into a single large network; the unconnected interactions are in the upper right of 
each panel. The networks in (a, b) connect over 79% (663 total) and 65% (548 total) of the unnamed and presumed poorly characterized proteins 
(yellow nodes), respectively [13].

http://bioinformatics.oxfordjournals.org/content/28/18/i473.full#ref-32
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Figure 3 The overall framework of the RWRHN algorithm [54].

weights, an estimation of the reliability of protein interactions 
and is included as edge labels in PPIN, can greatly improve the 
detection of protein complexes, although it is difficult to assess 
the reliability of the weights.

Zhang et al., constructed ontology augmented networks to 
predict protein complexes, which can combine the information 
from protein-protein interaction networks and gene ontology 
[42]. This method can formulate the topological structure of 
protein-protein interaction networks and the similarity of 
gene ontology annotations into a unified distance measure. 
The experimental results in this work showed that ontology 
augmented networks can get a higher F1 measure for predicting 
protein complexes.

Wu et al., presented a novel rough-fuzzy clustering (RFC) 

method to detect overlapping protein complexes in PPIN [43]. 
Rather than the graph models employed in previous approaches, 
this method applied fuzzy relation model by integrating fuzzy 
sets and rough sets to deal with overlapping complexes, and it 
determines whether the protein belongs to one or to multiple 
complexes by calculating the similarity between one protein 
and each complex. The work compared the RFC with several 
previous methods and show big performance improvement, i.e., 
the precision, sensitivity and separation are 32.4%, 42.9% and 
81.9% higher than mean of the five methods in four weighted 
networks, and are 0.5%, 11.2% and 66.1% higher than mean of 
the six methods in five un weighted networks.

There are many studies focus on protein complexes 
identification from PPIN. Shen et al. proposed a complex mining 
algorithm called Multistage Kernel Extension (MKE) algorithm 
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using a two-level kernel strategy based on the centrality-
lethality rule [44]. Yang et al. applies a sophisticated natural 
language processing system, PPI Extractor, to extract PPI data 
from biomedical literature, and integrated PPI datasets to detect 
protein complexes [45]. Hanna and Zaki proposed another 
ranking algorithm, named Pro Rank+, which can figure out 
important proteins and complexes in the Bio GRID repository, 
and some of them had been demonstrated by previous studies 
[46].

Network-based protein function prediction

In the past two decades, the vigorous development in 
sequencing technologies posed a novel challenge that is how 
to elucidate protein function from wealth of genomics data 
generated [47]. A few years ago, Sharan et al., showed in their 
work that, even for the most well-studied organisms such as 
yeast, about one-fourth of the proteins remain uncharacterized, 
and this high percentage does not drop evidently now [figure 2] 
[48]. Fortunately, protein interaction networks for many species 
provide a special view to predict the functions of proteins in a 
computational way.

Wu et al., systematically identified apoptotic/cell cycle related 
key proteins using a Naïve Bayesian model based a modified 
apoptotic/cell cycle related PPI networks [49]. Their work not 
only identified some already known key proteins such as p53, 
Rb, Myc and Src but also found that the proteasome, Cullin family 
members, kinases and transcriptional repressors play important 
roles in regulating apoptosis and the cell cycle. Meanwhile, they 
found some proteins were enriched in some pathways such as 
those of cancer, the proteasome, the cell cycle and Wnt signalling, 
which can provide further new clues towards future anticancer 
drug discovery.

Davis et al., predicted protein functions from the conservation 
of topology-function relationships in protein-protein interaction 
network [50]. They developed a statistical framework that is 
built upon canonical correlation analysis where the graphlet 
degrees represented the wiring around proteins in PINs and 
gene ontology (GO) annotations described the protein functions. 
Their method can characterize statistically significant topology-
function relationships, and uncover the functions that have 
conserved topology in PINs. Applications to the PINs of yeast 
and human show that their proposed frameworks had identified 
seven biological processes and two cellular components GO 
terms to be topologically orthologous.

Saha et al., proposed a software, named FunPred, to predict 
protein functions based on network neighborhood properties 
[51]. There are two approaches in FunPred, one applies a 
combination of three simple-yet-effective scoring techniques: 
the neighborhood ratio, the protein path connectivity and the 
relative functional similarity. Another is a heuristic approach 
using the edge clustering coefficient to reduce the search space 
by identifying densely connected neighborhood regions. Wu et 
al., developed a regularized non-negative matrix factorization 
(RNMF) algorithm for protein functional properties prediction 
where attribute features, latent graph, and unlabeled data 
information in PPI networks had been used [52]. Peng et al., 
predicted protein functions using an unbalanced Bi-random 

walk (UBiRW) algorithm on PPI network and functional 
interrelationship network by considering the topological and 
structural difference between them [53].

Network-based diseases-related gene prioritization

Elucidating the underlying molecular mechanisms of diseases 
has become increasingly important in disease prevention, 
diagnosis, and drug design [54]. PPIN-based analysis approaches 
have been recently developed and applied to diseases analysis [54-
60]. Candidate gene prioritization is one of important application 
of network-based knowledge. Studies on the properties of disease 
genes in protein interaction networks have shown that two genes 
sharing higher-order topological similarities are likely to interact 
with each other and may be associated with the same or similar 
phenotypes [61,62]. Wu et al., established a regression model that 
measures the correlation between gene closeness and phenotype 
similarities in the PPI network to prioritize potential candidate 
genes for inherited diseases on the basis of correlation scores 
[63]. Dezso et al., applied a modified shortest path between’s to 
prioritize candidate genes in PPI networks, where a candidate 
gene has high relevant score to the disease of interest if it laid 
more on significantly shorter paths connecting nodes of known 
disease genes than other genes in the network [H59H]. Recently, 
Luo and Liang proposed a random walk-based algorithm on the 
reliable heterogeneous network (RWRHN) to prioritize potential 
candidate genes for inherited diseases, in which a PPI network 
reconstructed by topological similarity, a phenotype similarity 
network and known associations between diseases and genes 
[figure 3][54]

DISCUSSION AND CONCLUSION
The development of powerful high-throughput experimental 

technologies has fundamentally changed the study of current 
system biology [64]. However, huge data produced by these 
different platforms also presents some serious challenges, such 
as the high false positive rate in current ‘wet’ experiments 
and the validation of the analytical results from ‘dry’ methods. 
Network-based analysis, a kind of computational tools, can adopt 
graph theory to address the inherent knowledge within the 
protein interaction data. For example, it can score the importance 
of proteins using degree information of nodes within PPIN no 
matter the network is weighted or unweighted. One of biggest 
advantage of network-based PPI approaches is it can analyze the 
interactions at a system biology level. Also, it can easily combine 
other information, such as GO term, protein subcellar location, 
gene regulation, and so on, into the processing framework, 
which in turn makes the PPI networks modeling more precise. 
Especially, network-based analysis will become more and more 
important for some complex diseases for many of them can be 
seen as network diseases, that is to say, the root of these diseases 
is not one or few molecules. In this work, we only focus on the 
new progresses published on four aspects, i.e., the functional 
modules identification, protein complexes prediction, protein 
function prediction and disease-related gene prioritization. It is 
clear that network-based methods hold incredible promise for 
protein interaction research in many other applications, and 
their capabilities in the hands of investigators will undoubtedly 
accelerate our understanding of the mechanism of cell to perform 
their functions.
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