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Abstract

In silico toxicology plays a vital role in the assessment of safety/toxicity of 
chemicals and the drug development process. In silico toxicology aims to complement 
existing toxicity tests to predict toxicity, prioritize chemicals, guide toxicity tests, and 
minimize late‐stage failures in drugs design. We provide a comprehensive overview, 
explain, and compare the strengths and weaknesses of the existing modeling methods 
and algorithms for toxicity prediction with a particular emphasis on computational 
tools that can implement these methods and refer to expert systems that deploy the 
prediction models.

INTRODUCTION
Drug design, sometimes referred to as rational drug design 

or simply rational design, is the inventive process of finding 
new medications based on the knowledge of a biological target 
[1]. The drug is most commonly an organic small molecule 
that activates or inhibits the function of a biomolecule such as 
a protein, which in turn results in a therapeutic benefit to the 
patient. In the most basic sense drug design involves the design 
of molecules that are complementary in shape and charge to 
the biomolecular target with which they interact and therefore 
will bind to it. Drug design frequently but not necessary relies 
on computer modeling techniques [2]. This type of modeling is 
often referred to as computer aided drug design. Finally, drug 
design that relies on the knowledge of the three – dimensional 
structure of the biomolecular target is known as structure-based 
drug design.

The addition of computer-aided drug design (CADD) 
technologies to the research and drug discovery approaches 
could lead to a reduction of up to 50% in the cost of drug 
design .Designing a drug is the process of finding or creating a 
molecule which has a specific activity on a biological organisms. 
Development and drug discovery is a time-consuming, expensive 
and interdisciplinary process whereas scientific advancements 
during the past two decades have altered the way pharmaceutical 
research produces new bioactive molecules. Advances in 
computational techniques and hardware solutions have enabled 
in silico methods to speed up lead optimization and identification.

DRUG DISCOVERY PROCESS
The development of new drugs is very complex, costly and 

risky. The process of drug discovery involves a combination of 
many disciplines and interests starting from a simple process of 
identifying an active compound. The discovery of a new chemical 

entity that modifies a cell or tissue function is but the first step 
in the drug development process. Once shown to be effective 
and selective, a compound which is to be discovered must be 
completely free of toxicity, should have good bioavailability and 
marketable before it can be considered to be a therapeutic entity. 
The initial research, often occurring in academia, generates data 
to develop a hypothesis that the inhibition or activation of a 
protein or pathway will result in a therapeutic effect in a disease 
state. The outcome of this activity is the selection of a target which 
may require further validation prior to progression into the 
lead discovery phase in order to justify a drug discovery effort. 
During lead discovery, an intensive search ensues to find a drug-
like small molecule or biological therapeutic, typically termed 
a development candidate, that will progress into preclinical, 
and if successful, into clinical development and ultimately be a 
marketed medicine (Figure 1). 

In silico DRUG DESIGN 
Computers are an essential tool in modern medicinal chemistry 

and are important in both drug discovery and development. 
Rapid advances in computer hardware and software have meant 
that many of the operations which were once the exclusive 
province of expert can now be carried out on ordinary laboratory 
computers with little specialist expertise in the molecular 
or quantum mechanics involved. The advent of software in 
the world of drug discovery has enabled the development of 
novel drug candidates as a more sophisticated, precise and 
rapid process. Computers can be used to simulate a chemical 
compound and design chemical structures. Computer-aided 
design including quantitative energy calculations and graphical 
methods has been rapidly introduced in the pharmaceutical 
industry. Potential compounds are modeled computationally to 
estimate their ‘fit’ to the target by computing a scoring function 
or an energy function. Most algorithms consider both structural 
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and functional interactions such as steric fit, hydrogen bonding 
and hydrophobic interactions. Thus, a computer can show 
scientists what the receptor site looks like and how one might 
tailor a compound to block an enzyme from attaching there.

Advantages of in silico methods

•	 Reduce costs

•	 Reduce time to market

•	 Reduce side effects

•	 Improve success rate

•	 Improve bioavailability & bioactivity

•	 Improve understanding of drug-receptor interactions

•	 Improve understanding of molecular recognition 
process

•	 Less man power is required

In silico TOXICOLOGY
It is a vibrant and rapidly developing discipline that integrates 

information and data from a variety of sources to develop 
mathematical and computer based models to better understand 
and predict adverse health effects caused by chemicals such 
as environmental pollutants and pharmaceuticals. Toxicity is 
a measure of any undesirable or adverse effect of chemicals. 
Toxicity tests aim to identify harmful effects caused by substances 
on humans, animals, plants, or the environment through 
acute exposure (single dose) or multiple exposure (multiple 
doses).  Several factors determine the toxicity of chemicals, 
such as route of exposure (e.g., oral, dermal, inhalation), 
dose (amount of the chemical), frequency of exposure (e.g., 
single versus multiple exposure), duration of exposure, ADME 

properties (absorption, distribution, metabolism, and excretion/
elimination), biological properties (e.g., age, gender), and 
chemical properties. Animal models have been used for a long 
time for toxicity testing. However, in vitro toxicity tests became 
plausible due to the advances in high throughput screening. 
In silico  toxicology (computational toxicology) is one type of 
toxicity assessment that uses computational resources (i.e., 
methods, algorithms, software, data, etc.) to organize, analyze, 
model, simulate, visualize, or predict toxicity of chemicals. It is 
intertwined with in silico pharmacology, which uses information 
from computational tools to analyze beneficial or adverse effects 
of drugs for therapeutic purposes [2].

Computational methods aim to complement  in vitro  and  in 
vivo  toxicity tests to potentially minimize the need for animal 
testing, reduce the cost and time of toxicity tests, and improve 
toxicity prediction and safety assessment. In addition, 
computational methods have a unique advantage of being able to 
estimate chemicals for toxicity even before they are synthesized. 
In silico toxicology encompasses a wide variety of computational 
tools (A) databases for storing data about chemicals, their 
toxicity, and chemical properties; (B) software for generating 
molecular descriptors; (C) simulation tools for systems biology 
and molecular dynamics; (D) modeling methods for toxicity 
prediction; (E) modeling tools such as statistical packages and 
software for generating prediction models; (F) expert systems 
that include pre-built models in web servers or standalone 
applications for predicting toxicity; and (G) visualization tools.

TOXICITY PREDICTION OF A MOLECULE
Molecule is formed when two or more atoms combine together 

chemically (e.g.: H2O). A compound is said to be a molecule when it 
contains at least two different elements (e.g.: H2O). All compounds 
can be called as molecule but all molecules are not compounds. In 

Figure 1 Schematic representation of drug discovery process.
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terms of pharmacology or in biochemistry, a small molecule is an 
organic compound which has low molecular weight and may act 
as a substrate or inhibitor. In medical field, the term is restricted 
to the molecule that binds to a biopolymer and act as an effector. 
Most of the small molecules are drug molecules.

Drug molecules are potential lead molecules which act as 
therapeutic agents and gives beneficiary effects. To come up with 
single potential lead molecule it takes 12 -16 years. Besides the 
beneficiary aspects, there may be adverse effects also when using 
drug/potential lead molecules.

It has been known that, most well known drugs are poisonous 
substances. All useful drugs produce unwanted effects due to 
complex nature of human body. Some drugs are more adverse 
and can produce dangerous effects. So, toxicity is more important 
measurement during the synthesis of a molecule. One knows that 
it is difficult to synthesize a potential lead molecule in a shorter 
time period by undergoing all types of tests.

Computer Aided Drug Designing approaches to design a drug 
molecule using different tools to predict the pharmacokinetic 
properties (what the body does to the drug when the drug is 
administered). The pharmacokinetic properties are also stated as 
ADME-Tox (Absorption, Distribution, Metabolism, Distribution 
and Toxicity).

Drug failures due to toxicity can only be known in the later 
stages of clinical trials. To minimize the time required by these 
clinical trials, determination of toxicity potential as early as 
possible using Insilco prediction is very essential. With the 
richness of combinatorial library and high throughput screening, 
prediction on drug toxicity is easier and possible even before the 
synthesis of the molecule.

(* Insilco – expression used to mean “performed on computer 
or via computer simulation”)

Synthesizing a single new drug molecule typically takes 12 
-16 years and in most of the cases these molecules are rejected 
because of failure in clinical trials at the level of toxicity. 
Pharmaceutical companies have recently come up with ADME 
and toxicity test with the help of IN SILICO based approaches. 
These approaches can be used to predict the toxicity of a drug 
molecule even before its synthesis. Even though the IN SILICO 
approaches are quiet easier, there are problems to overcome.

1. Toxicity may refer to a wide range of effects like 
carcinogenicity, cytotoxicity. 

2. There is insufficient data, particularly in the case of humans.

3. The Insilco methods are class specific, determining whether 
toxicity is on or off are least accurate.

Drug molecules can cause toxicity in many ways, like it may 
not be the drug itself that causes the toxicity, the metabolite may 
also cause some unwanted effects. In some cases, the cytotoxic 
and mutagenic properties of the drug molecules are selected to 
kill the diseased or cancer cells but it has a high probability that it 
may also affect normal cells.

Toxicity measurement

Toxicity is a quantity that can be measured; the simple 

measure of toxicity is LD50. It is a drug dose which kills 50% of 
treated animals within a period of time. The therapeutic window 
gives the range of the dosage between the minimum effective 
therapeutic concentration and the minimum toxic concentration.

There are many tools to predict the toxicity of a molecule, 
some of them are commercial, some are online web servers and 
few of them are freely downloadable (Figure 2).

SOFTWARES TOOLS USED IN IN SILICO 
TOXICOLOGY

There are a host of statistical expert systems though TOPKAT, 
PASS, MCASE, TEST, CAESAR, LAZAR & OCHEM are most 
commonly known. 

TOPKAT (Toxicity Prediction by Komputer Assisted 
Technology)

It contains a number of models covering a range of different 
toxicity endpoints (http://accelrys.com/products/collaborative-
science/biovia-discovery-studio/qsaradmet-and-predictive-
toxicology.html) including rat chronic LOAEL, skin irritation, 
eye irritation, developmental toxicity, rodent carcinogenicity, 
rat maximum tolerated dose, carcinogenicity potency TD50, acute 
oral rat, skin sensitization and Ames mutagenicity [3]. 

Many of the models provide a binary summary prediction 
whereas models such as those for acute oral toxicity estimate 
a LD50 value. A prediction is accompanied with information of 
whether a target substance of interest lies within the applicability 
domain of the model and associated confidence limits. A search 
for similar analogs within the training sets underpinning each 
model can be performed which provides an idea of the chemical 
coverage of the model for the target substance. 

PASS (Prediction of Activity Spectra for Substances)

It is a commercial expert system which estimates the 
probability of over 4000 kinds of biological activity including 
pharmacological effects (e.g., antiarrhythmic), biochemical 
mechanisms (e.g., cyclooxygenase 1 inhibitor), toxicity (e.g., 
carcinogenic), metabolism (e.g., CYP3A4 inhibition), gene 
expression regulation (e.g., VEGF expression inhibition), and 
transporter related activities (e.g., P-glycoprotein substrate). 
Predictions are based on the analysis of structure activity-
relationships for more than 250,000 biologically active substances 
including drugs, drug-candidates, leads and toxic compounds. A 
free version known as PASS Online (http://www.pharmaexpert.
ru/passonline/) is available for use upon registration which 
allows predictions to be made on a substance by substance basis. 

MCASE from multicase.com 

 It contains a wealth of different models for toxicity prediction 
(http://www.multicase.com/caseultramodels#model_bundle_
list). Endpoints include reproductive toxicity, developmental 
toxicity, renal toxicity, hepatotoxicity Ames mutagenicity, 
cardiotoxicity, and skin and eye toxicity amongst others. CASE 
Ultra is the end-user application of MCASE. The QSAR models 
are derived on the basis of biophores and the modulators. The 
program performs a hierarchical statistical analysis of a training 
set to uncover substructures that appear mostly in active 

http://www.multicase.com/caseultramodels#model_bundle_list
http://www.multicase.com/caseultramodels#model_bundle_list
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Figure 2 Graph of Therapeutic window.

Figure 3 In silico toxicology tools, steps to generate prediction models, and categories of prediction models Structural Alerts and Rule-based Models. 

chemicals therefore having a high probability for the observed 
activity – these are termed biophores. For each set of chemicals 
containing a specific biophore, the program identifies additional 
parameters called modulators, which can be used to derive QSARs 
within the reduced set of congeneric chemicals. The modulators 
consist of certain substructures or physicochemical parameters 
that significantly enhance or diminish the activity attributable to 
the biophore. QSARs are derived by incorporating both biophores 
and modulators into the model. 

TEST (Toxicity Estimation Software)

It is a freely available software tool that houses a number of 
models that have been developed using a number of machine 
learning approaches by the US EPA. A user decides on an endpoint 

to be predicted based on a particular modeling approach. 
The prediction is reported along with a consensus prediction 
based on all 6 other approaches as appropriate as well as the 
performance of similar analogs from the training and test sets. 
There are three mammalian toxicity models available; namely 
rat oral LD50, Ames mutagenicity and developmental toxicity. The 
developmental toxicity model was developed under the auspices 
of the EU project CAESAR and implemented into TEST as an 
additional toxicity module. 

CAESAR was an EU funded project which resulted in the 
derivation of a number of models for different endpoints 
including skin sensitization, Ames mutagenicity, carcinogenicity 
and developmental toxicity. 
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LAZAR (Lazy Structure-Activity Relationships)

It uses an automated read-across procedure to make 
predictions for a number of different endpoints. The approach is 
built onto the OpenTox (http://www.opentox.org/) framework 
within the ToxPredict application. LAZAR houses models for 
carcinogenicity in different species, Ames mutagenicity as well as 
maximum repeated dose (http://lazar.in-silico.de/predict). 

OCHEM (Online Chemical Modeling Environment)

It is a web-based platform (http://www.ochem.eu) aimed at 
trying to simplify the steps needed to derive new QSAR models. 
The platform houses a database of experimental measurements 
and a modeling framework to allow users to derive new QSARs 
using the statistical algorithms from the available experimental 
data or to upload their own data. Users can register to access the 
system and the available QSAR models, elevated privileges are 
given to users who pay a fee or contribute in kind. To date the only 
toxicity model that is currently publically available is an Ames 
mutagenicity QSAR model. A set of over 1700 structural alerts 
(known as ToxAlerts) for a wide range of endpoints including 
genotoxicity, developmental toxicity and skin sensitization are 
also available. 

TIMES (Tissue Metabolism Simulator)

It is nominally categorized as a hybrid expert system since 
it contains alerts some of which are underpinned by 3D QSARs. 
It enables predictions to be derived from local models whilst 
retaining the breadth of coverage for a wide range of chemicals. 
The strength of the TIMES platform lies in the fact that its models 
incorporate metabolism – there are models that predict skin 
sensitization potency, the outcome of an Ames mutagenicity test 
as well as the outcomes for in vitro chromosomal aberration and 
in vivo micronucleus tests. These models rely on both structure-
activity and structure metabolism rules to make their predictions.

PreADMET

PreADMET is one of the online servers to predict ADME, 
toxicity, Drug likeness and molecular descriptor calculation. 
PreADMET predicts the mutagencity and carcinogencity of 
compounds, so that toxicity is avoided in compounds.

The input compounds given to PreADMET server is either by 
drawing the molecule or by uploading the “mol” format of that 
compound which is to be predicted. The compounds structure 
or the “mol” format can be obtained from different chemical 
databases like drug bank, Chembl, Pubchem, etc.

PreADMET tools use the strategy to obtain the model which 
can be used to predict absorption, distribution and toxicity.

In silico MODELING METHODS
Many  in silico methods have been developed to predict the 

toxicity of chemicals. The methods we discuss here are chosen 
either because they illustrate the historical development of  in 
silico toxicology or they represent the state-of-the-art method for 
predicting toxicity. For each method, we provide (if applicable) a 
mathematical description, discussion of strengths and limitations, 
recommendations about when and why to use the method, and 
existing tools that implement the method. Additionally, for the 

sake of clarity, we keep equations and visual representations of 
models as general as possible (Figure 3).

Structural alerts (SAs)  (also called toxicophores/toxic 
fragments) are chemical structures that indicate or associate to 
toxicity. SAs can consist of only one atom or several connected 
atoms. A combination of SAs may contribute to toxicity more than 
a single SA. 

There are two main types of rule-based models that we will 
consider: human-based rules (HBRs) and induction-based rules 
(IBRs). HBRs are derived from human knowledge of field experts 
or from literature, but IBRs are derived computationally. HBRs 
are more accurate but are limited to human knowledge that 
could be incomplete or biased. Moreover, updating HBRs is often 
impractical as it requires detailed literature analysis.  On the 
contrary, IBRs can be generated efficiently from large datasets. 
IBRs may propose hypotheses about associations between 
chemical structural properties (or their combinations) and 
toxicity endpoints, which may not be identified through human 
insights. IBRs are implemented using probabilities to determine 
if SAs correspond to the toxic or non-toxic class. It is possible to 
have hybrid-based rules systems that contain IBRs and HBRs, 
with new rules being generated computationally.

It is easy to interpret and implement SAs.  They are useful 
in drug design to determine how drugs should be altered to 
reduce their toxicity. Using structure to predict toxicity allows 
identifying the structure of potential metabolites.

LIMITATIONS OF STRUCTURAL ALERTS
•	 SAs use only binary features (e.g., chemical structures are 

either present or absent) and only qualitative endpoints 
(e.g., carcinogenic or non-carcinogenic). 

•	 SAs do not provide insights into the biological pathways of 
toxicity and may not be sufficient for predicting toxicity.

•	 Depending on the concurrent absence or presence of 
other chemical properties, toxicity may decrease or 
increase.

•	  The list of SAs and rules may be incomplete, which 
may cause a large number of false negatives (i.e., toxic 
chemicals predicted as non-toxic) in predictions.

 It is necessary to understand how to interpret the output of 
SA models. If a chemical does not include SAs or does not match 
any toxicity rules, this does not indicate non-toxicity. However, 
there should be a balance between the list of SAs and rules, their 
comprehensiveness, and predictive power. If SAs and rules are 
diverse, they can be applied to a large number of chemicals, 
but this may increase false positives (i.e., non-toxic chemicals 
predicted as toxic). However, if they are too narrow, they can be 
applied only to a small group of chemicals, and this may increase 
false negatives (i.e., toxic chemicals predicted as non-toxic).

An example of SA list for skin sensitization was published 
in 1982 by Dupuis and Benezra.  Another SA list was proposed 
by Ashby and Tennant  in 1988 to predict carcinogenicity and 
mutagenicity, hepatotoxicity, cytotoxicity, irritation/corrosion of 
skin, and eye and skin sensitization. 
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CHEMICAL CATEGORY, READ-ACROSS, AND 
TREND ANALYSIS

A chemical category is a group of chemicals whose properties 
and toxicity effects are similar or follow a similar pattern. 
Chemicals in the category are also called source chemicals. 
The  OECD Guidance On Grouping Of Chemicals  lists several 
methods for grouping, such as chemical identity and composition, 
physicochemical and ADME properties, mechanism of action 
(MoA), and chemical/biological interactions.

 Read-across is a method of predicting unknown toxicity of a 
chemical using similar chemicals (called chemical analogs) with 
known toxicity from the same chemical category.

Trend analysis is a method of predicting toxicity of a chemical 
by analysing toxicity trends (increase, decrease, or constant) of 
tested chemicals. A hypothetical example of trend analysis shows 
that when carbon chain length (CCL) increases, acute aquatic 
toxicity increases.

A summary of different parameters that must be considered 
when designing a read-across model is depicted in Figure (4). 

There are two ways to develop a read-across method: analog 
approach (AN) (called one-to-one), which uses one or few analogs, 
and a category approach (CA) (called many-to-one), which uses 
many analogs. AN may be sensitive to outliers because two 
analogs may have different toxicity profiles. Using many analogs 
for CA is useful to detect trends within a category and may 
increase confidence in the toxicity predictions. Identifying similar 
chemicals can be done in two steps: representing chemicals as 
feature vectors of chemical properties, and then calculating 
similarity of chemicals. The first step is implemented using either 
binary or holographic fingerprints. A binary fingerprint is a 
feature vector of binary bits representing presence (1) or absence 
(0) of a property (e.g. presence of a methyl group).  However, 
a holographic fingerprint uses frequency of properties (e.g. 
number of methyl groups). Continuous chemical properties (e.g., 
melting point) can be used as well. 

Advantages of read across

•	 Read-across is transparent

•	  Easy to interpret and implement

•	   Read-across can model quantitative and qualitative 
toxicity endpoints, and it allows for a wide range of types 
of descriptors and similarity measures to be used to 
express similarity between chemicals.

Limitations of read across

•	 Statistical similarity measures do not provide biological 
insight of toxicity. 

•	  complex similarity measures may complicate model 
interpretation.

•	   In reality, read-across uses small datasets compared to 
other approaches such as QSAR because there are usually 
only a few analogs for a given chemical. 

Read-across was applied to predict: - carcinogenicity, hepa-

toxicity, aquatic toxicity, reproductive toxicity, skin sensitization, 
and environmental toxicity.

Examples of tools implementing read-across are 
The OECD QSAR Toolbox,  Toxmatch,  ToxTree, AM-
BIT, AmbitDiscovery,AIM, DSSTox, or ChemIDplus. .

Dose–Response and Time–Response Models

Dose–response (or time–response) models are relationships 
between doses (or time) and the incidence of a defined biological 
effect (e.g., toxicity or mortality).  A dose is ‘the total quantity 
of a substance administered to, taken up, or absorbed by an 
organism, organ, or tissue and can be measured with in vitro or in 
vivo experiments.’ Time can be the time to produce a response or 
the time for recovery.

 Exposure time can be continuous, intermittent, or random, 
and exposure can be acute, short-term, sub-chronic, and chronic 
exposure. Time–dose models describe the relationship between 
time and dose for a constant response.

Limitations are

•	 The three models cannot extrapolate to other chemicals.

•	  Time–response models cannot extrapolate to other doses 
of the same chemical.

•	   Time–response models require that tested individuals 
have uniform susceptibility levels,  or these models may 
be unreliable if some individuals have an extremely low 
or high resistance.

•	  If time intervals are long, time–response models may 
overestimate or underestimate the response at a given 
moment. 

These time- response and dose-response models are 
complementary to one another and must be used together to 
achieve reliable conclusions.

Several databases include CEBS, PubChem .These models 
were used for modeling rectal cancer, mutagenicity and 
developmental toxicity.

PHARMACOKINETIC MODELS 
Pharmacokinetic (PK) models relate chemical concentration 

in tissues to time, estimate the amount of chemicals in different 
parts of the body, and quantify ADME processes.  Toxicokinetic 
models are PK models used to relate chemical concentration 
in tissues to the time of toxic responses. PK models can be 
compartmental and non-compartmental.  A compartment is 
the whole or part of an organism in which the concentration 
is uniform.  Compartmental models consist of one or more 
compartments, and each compartment is usually represented by 
differential equations.

One-compartment models represent the whole body as 
a single compartment, assume rapid equilibrium of chemical 
concentration within the body after administration, and do not 
consider the time to distribute the chemical. However, these 
models do not consider the distribution time of chemicals. Two-
compartment models consist of two compartments: central (for 
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Figure 4 Different properties of read-across models.

rapidly-perfused tissues e.g., liver or kidney) and peripheral (for 
slowly perfused tissues e.g., muscle or skin). 

On the other hand, physiologically based pharmacokinetic 
(PBPK) models include, in addition to concentration and time, 
physiological descriptors of tissues and ADME processes 
such as volumes, blood flows, chemical binding/partitioning, 
metabolisms, or excretions.

PHARMACODYNAMIC MODELS
Pharmacodynamic (PD) models relate a biological response 

to the concentration of chemical in tissue. Toxicodynamic models 
are PD models that relate toxicity to the concentration of the 
chemical. PD models that are based on anatomy, physiology, 
biochemistry, and biology are called physiologically based 
pharmacodynamic (PBPD) models. 

Examples of PK and PD modelling tools are 
WinNonlin, Kinetica, and ADAPT 5. For example, PBPK was used 
for route-to-route extrapolation, toxicity and risk assessment, and 
carcinogenicity assessment.

Recent Advances in In Silico Toxicology

Nano toxicity:

Nano toxicity is the study of adverse effects caused by 
nanomaterials. Nanomaterial’s are small particles on the 
nanoscale (10−9 m) size range. When a particle size is decreased 
within the nanoscale size range, its physical and chemical 
properties are changed, affecting its toxicity. It was found that 
nanoparticles cause different or worse toxicity effects than the 
larger particles of the same substance.  A nanoparticle can be 
toxic even if the particle is not toxic at a larger size. The small 

size of nanomaterials facilitates cell membrane penetration and 
biodistribution. 

Properties affecting toxicity of nanomaterials:

•	 The shape of nanomaterials affects toxicological 
responses. For example, isolated long fiber carbon 
nanotubes are more inflammogenic in the outer regions 
of the lung than non-fibrous nanotubes.

•	 Large surface areas of nanomaterials increase the contact 
area with the biological environment and their chemical 
reactivity.

•	 Surface coating material of the nanomaterials can 
affect biological functions. It was found that toxicity of 
nanomaterials that have the same metallic core could be 
predicted by using the properties of the coating material.

•	 Other physicochemical properties such as electrostatic 
interactions between nanomaterials and biological 
targets can influence toxicity.

Mechanisms of nanoparticles inducing toxicity: 

•	 Interaction and binding of the nanoparticle’s surface with 
a biological environment (e.g., protein or cells)

•	 Cellular entry: nanoparticles potential to enter cells

•	 Release of ions from the surface: ionic forms of metals can 
be more active and

•	 Generation of reactive oxygen species (ROS): 
overproduction of ROS can cause oxidative stress and 
inflammation, which disrupt normal biological functions 
and damage DNA and proteins (Figure 5). 
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TOXICITY TEST
In order to ensure drug safety a variety of toxicological 

evaluations are performed, to the requirement of national 
regulatory authorities such as the Food and Drug Administration 
(FDA) in the United States and the European Medicines Evaluation 
Agency (EMEA) in the European Union [4]. The tests that may be 
performed are:

 • Acute toxicity (24 h) 

• Prolonged and chronic toxicity (30-90 days)

 • Mutagenicity 

• Carcinogenicity 

• Teratogenicity 

• Reproductive effects 

• Skin sensitization (including photosensitization)

 • Skin irritation

 • Eye irritation

 • Immunological assessment. 

Acute toxicity 

Acute toxicity tests are normally performed in rats and mice 
and occasionally in the rabbit and guinea pig. The purpose of 
the assay is to determine ultimately the LD50, or the dose of drug 
that will be lethal to 50% of a population. The time period of the 
test is short (normally 24 h and occasionally up to 48 h) with 
observation following dosing of up to 14 days.

Dosing the animals may be via a number of routes including 
intravenous, intraperitoneal, dermal, oral and inhalation. 
Organization for Economic Co-operation and Development 
(OECD) guidelines provide experimental details for oral (OECD 
Guideline 401) and dermal dosing (OECD Guideline 402) as well 
as the inhalation route (OECD Guideline 403; details of the OECD 
guidelines can be obtained from their internet site. Whilst the 
acute toxicity test is relatively simple to perform, it can provide 
the experienced toxicologist with a wealth of information far 
beyond the basic LD50, including information on observational 
and physiological effects. The LD50 test is now not acceptable in 
many countries and has been replaced by the fixed dose, up-and-
down, and acute toxic class procedures. 

Repeated dose toxicity assays 

Toxicological assessment for longer time periods is required 
as a drug progresses through the development process. This 
provides toxicological information regarding exposure to drugs, 
normally at sub-lethal concentrations, over a more realist 
timeframe. Short-term repeated dose studies (OECD Guideline 
407) last between 14 and 28 days. Dosing is graded in 3-4 
concentrations with the highest dose designed to cause some 
toxicity, but not lethality. Normally between 5-10 rats of each sex 
(though mice and dogs are also utilized) are tested per group. At 
the completion of the test a whole host of clinical and histological 
evaluations are recorded, including experimental observations 
and whole body and individual organ analysis. Such information 
will clearly enhance that gathered from acute toxicity studies. 
Other subchronic toxicity studies are maintained for up to 90 
days (OECD Guideline 408). Again animals are exposed to the 
drug continuously and potentially via a number of different 
routes. This provides much information regarding organ toxicity. 

Testing for carcinogenicity 

Carcinogenicity assays may be considered as an extension 
of the chronic toxicity test. To test a pharmaceutical substance 
for carcinogenicity is a lengthy and expensive process. Typically, 
a substance is tested in two species (rats and mice) and both 
sexes with continuous exposure for up to 24 months. Exposure is 
typically via the oral route. 

Tests for reproductive toxicity and teratogenicity 

The determination of the effects of chemicals on the 
reproductive ability of males and females, as well as issues 
such as teratogenicity, is a broad and complex area. It is 
generally accepted that teratogenicity is only a part of potential 
reproductive toxicity. Testing for teratogenicity (abnormal foetal 
development) requires the in utero exposure of the foetus to a 
drug. Tests are normally performed in the rat, although the rabbit 
may occasionally be used.

Typically three dose levels are applied, the highest being that 
which will induce some limited maternal toxicity; the lowest 
dose will cause no maternal toxicity. For rat tests 20 pregnant 
females will be used at each dose level. The drug is administered 
during the development of the major organs in the foetus (e.g., 
6-15 days after conception). The animals are dosed via their 
drinking water. The test is terminated on the day prior to 
normal delivery and foetal development, in terms of both the 
number of live foetuses, and of any malformations present, is 
assessed. For the more accurate assessment of effects of a drug 
on species fecundity and between generations, a multigeneration 
toxicity test is required. A good example is the two-generation 
reproduction toxicity test (OEeD Guideline 416), although these 
tests may also be maintained for three or more generations. Such 
assays are performed usually with rats at three dose levels. The 
highest dose level is typically one-tenth of the LD50; the lowest 
should cause no sub-chronic toxicity. Males and females are 
treated with the drug for 60 days, after which they are allowed 
to mate. Subsequent generations are assessed for a wide variety 
of endpoints including: number of live births; abnormalities at 
birth; gender and weight at birth; histological examinations, etc. 

Figure 5 Schematic representation of analyzing methods.
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Alternatives to toxicity testing 

It can be concluded from this brief review of toxicological 
methods that the experimental assessment of drug toxicity 
is a time-consuming, expensive, yet essential, part of the 
pharmaceutical research and development process. The 
consequence of a drug being found to be toxic at a late stage of 
development could be immensely costly to a company. With 
this in mind, methods are constantly being sought to determine 
drug toxicity as early and as cheaply as possible. Much effort has 
been placed into the development of in vitro assays, cell culture 
techniques and most recently DNA arrays as replacements 
for toxicity testing. In addition, a number of computer-aided 
toxicity prediction methods are available. These are based on 
the fundamental premise that the toxicological activity of a drug 
will be a function of the physico-chemical and/or structural 
properties of the substance. Once such a relationship has been 
established, further chemicals with similar properties can be 
predicted to be toxic.

COMPUTER AIDED PREDICTION OF TOXICITY 
AND METABOLISMS

The development of computer-aided toxicity and metabolism 
prediction techniques can be broadly classed into three areas:

 • Quantitative structure-activity relationships (QSARs) 

• Expert systems based on QSARs

 • Expert systems based on existing knowledge. 

Quantitative structure-activity relationships 

QSARs attempt to relate statistically the biological activity 
of a series of chemicals to their physico-chemical and structural 
properties. They have been used successfully in the lead 
optimization of drug and pesticide compounds for over three 
decades. They have also been applied to the prediction of toxicity. 
The most straightforward QSARs have been developed for acute 
toxicity, with relatively restricted groups of compounds, about 
which something of the mechanism of action is known.

In this approach the toxicity of the compounds is described 
as a function of their ability to penetrate to the site of action, 
or accumulate in cell membranes (a hydrophobic phenomenon 
parameterized by log P), and their ability to react covalently with 
macromolecules (an electrophilic phenomenon parameterized 
by ELUMO). A number of caveats to this model are immediately 
obvious. Firstly, whilst this model clearly fits the data well, it 
does so only for a relatively small number of structurally similar 
molecules. Its application to predict drug toxicity is likely to be 
extremely limited. It is envisaged that for the efficient prediction 
of acute toxicity a tiered approach combining both structural and 
physico-chemical rules with such QSARs will be required. Such 
rules may direct the prediction to be made from, for example, 
separate QSARs for aliphatic and aromatic molecules, or account 
for effects such as ionization or steric hindrance of reactive 
centers. It should be noted that such a tiered approach still 
requires more effort in the measurement of toxicological activity 
and modeling. 

The second caveat relates to the nature of the biological 
activity itself. It should be no surprise that the data have been 

obtained from an in vitro toxicological assay. Such data are 
quickly and cheaply determined (and can be obtained in one 
laboratory, as in this case). Undoubtedly for drug toxicity a model 
based on mammalian LD50 data would be preferable. However, 
very few such QSARs are available. The reason for this is believed 
to be that there are not sufficient “quality” toxicity data on which 
to develop these QSARs. 

Whilst a large number of toxicity data may be available on 
databases such as the Registry of Toxic Effects of Chemical 
Substances there is no consistency in the data, and many attempts 
to model such data are clearly hindered by the excessive error and 
inter-laboratory variation that may exist. Johnson and Jurs [5] 
report a predictive model for the acute oral mammalian toxicity 
for 115 anilines using data retrieved from the RTECS database. 
The model utilizes a neural network based on five physico-
chemical descriptors. It is reported to predict the toxicity of an 
external validation set well. Further unpublished analysis of the 
toxicity data suggests that there may, however, be considerable 
variation in the data, following a comparison of the toxicity 
data for positional isomers in the data set. Other workers have 
investigated the acute toxicity data from RTECS to rats and mice 
(based on an arbitrary categoric scale) to develop a model based 
on a decision tree approach for aliphatic alcohols. QSARs have 
been developed for a whole range of other toxicity endpoints, 
especially those that provide a quantitative determination of 
toxicity. 

Expert systems for toxicity prediction 

“Expert system” is taken to mean a computer-assisted 
approach to predict toxicity. Expert systems based on QSARs 
The logical extension of the QSAR approach to make large scale 
predictions of toxicity is to computerize it. A simple DOS-based 
QSAR program is MicroQSAR. Following the entry of a SMILES 
string a wide variety of endpoints are predicted. Whilst most of 
these are environmental in nature, a number of human health 
effects are also predicted. Since its inception, the program has 
not however been developed to achieve its full potential. Another 
environmentally-based prediction program is ECOSAR. This 
operates by assigning a molecule to a particular class to make 
a prediction (normally based on log P), and has, as such, been 
criticized for the arbitrary manner in which classes are identified. 
As such, it gives the user the opportunity to see the method 
(and view the result) of the prediction that will be made by the 
United States Environmental Protection Agency (U.S. E.P.A.). 
TOPKAT, and the related program Q-TOX, are probably the best 
known and commercially successful QSAR based expert system 
prediction programs. TOPKAT was developed by Health Designs 
Inc., a wholly owned subsidiary of Accelrys. The link up with 
Accelrys means that the TOPKAT system is now integrated with a 
number of other tools, such as the TSAR molecular spreadsheet. 
The power of this is clearly the ability to make predictions from 
the spreadsheet. TOPKAT makes predictions for a number of 
toxicity endpoints, including: carcinogenicity; mutagenicity; 
developmental toxicity; maximum tolerated dose; various acute 
toxicities and others.

An appreciation of the ethos behind the toxicity prediction 
systems is important to understand their capabilities. TOPKAT 
models are developed from large heterogeneous databases 
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of compounds, normally obtained from sources such as the 
RTECS database, and the open literature. The toxicity of these 
compounds may thus be measured by a variety of different 
methods in a number of different laboratories. Relationships 
are sought between the toxicity and any of 1000s of different 
physico-chemical and structural indices. These indices are 
normally based on topological and electrotopological properties 
of the whole molecules and individual atoms within them. It is 
thus often difficult to assign any mechanistic meaning and thus 
confidence to these models. A particular strength of the TOPKAT 
system is that it provides an estimate of confidence that can be 
attached to the prediction. The so-called “Optimum Prediction 
Space” will indicate whether the prediction has been made from 
information (in terms of the training set of molecules) similar to 
that of the predicted molecule.

 Another well recognized prediction methodology is the 
computer automated structure evaluation (CASE) technique. 
This was developed by Klopman and coworkers and the CASE 
technique drives a number of systems including CASETOX, CASE, 
MULTICASE and TOXALERT [6]. Predictive models have been 
developed for a number of toxicological endpoints including 
carcinogenicity; mutagenicity; teratogenicity; acute toxicities 
as well as physico-chemical properties. The CASE models are 
derived from large and heterogeneous data sets. Compounds 
are split into fragments ranging from two to n atoms (though 
fragments greater than eight atoms are likely to be unwieldy). 
The fragments are then assessed statistically to determine if they 
may promote the biological activity (biophores) or decrease it 
(biophobes). Once fragments have been identified, they can be 
used either as “descriptors” in a regression-type approach to 
predict toxicity, or occasionally as structural alerts for rule-based 
systems. As with TOPKAT, this approach requires large sets of 
toxicological data, which will inevitably include compilations 
from the open literature. Both techniques do, however, provide 
predictive models from such data in a short period of time. 
The CASE approach lacks a mechanistic approach to identify 
the fragments (it is simply a statistical analysis), although it is 
suggested that mechanistic interpretation of the fragments can 
be applied a posteriori. Recently the United States Food and 
Drug Administration have come to a Cooperative Research and 
Development Agreement (CRADA) with Multicase Inc. to develop 
the carcinogenicity model, with the inclusion of proprietary 
regulatory data. 

Expert systems based on existing knowledge

There are a number of expert systems that make predictions 
of toxicity from a “rule-based” approach. These are expert 
systems in their purest form, which capture the knowledge of an 
expert for utilization by a non-expert.

The power and utility of these systems is reliant upon two 
items: firstly adequate software is required to comprehend and 
interpret chemical structures; and secondly knowledge is needed 
to form the rule-base of the expert systems. The former is well 
developed and a number of software packages are commercially 
available as detailed herein; the latter, for many toxicological 
endpoints, is still at a rudimentary level. The software 
packages developed by LHASA Ltd provide a good illustration 
of the systems available to predict toxicological and metabolic 

endpoints. LHASA Ltd. itself is a unique company amongst the 
expert system providers. LHASA Ltd. has charitable status and 
is the coordinator for a collaborative group of “customers” 
who purchase its products (in particular DEREK (Deductive 
Estimation of Risk from Existing Knowledge) for Windows™).

The collaborative group includes members from the 
pharmaceutical, agrochemical, and personal product industries, 
as well as regulatory agencies, from Europe and North America. At 
the time of writing there are over 20 members in the collaborative 
group. Members of the group are given the opportunity to 
contribute their own knowledge to the development of new 
rules. Probably the most developed product from LHASA is the 
DEREK for Windows™ software, which provides qualitative 
predictions of toxicity from its rule base. As with all such systems, 
the concept is simple: namely that if a particular molecular 
fragment is known to cause toxicity in one compound, if it is 
found in another compound the same toxicity will be observed. 
The system is driven by the LHASA software originally written 
in the CHMTRN language for the prediction of chemical synthesis 
and reactions. The knowledge base contains rules for a number of 
endpoints including: skin sensitization, irritancy, mutagenicity, 
carcinogenicity and many others [7].

Utility of QSARs and expert systems [8] 

A whole host of mathematical models and computational 
techniques are presented herein to predict metabolism and 
toxicity.

 • The particular toxicity endpoint required.

 • Whether or not a model is available and whether the 
training set, or knowledge base on which the model is based, is 
developed sufficiently for the drug in question.

 • The nature of the prediction required, e.g., a quantitative 
or qualitative assessment of toxicity, and whether an estimate 
of confidence, and the level of confidence, are required. All these 
factors must be considered before one makes an attempt to 
determine whether toxicity prediction is even viable.

Disadvantages of computer-aided toxicity prediction 
methods [9] 

The drawback with using QSARs and expert systems to 
predict toxicity is simple to define, yet much more complex to 
understand and to fix. The drawback is simple: these techniques 
cannot make adequate predictions for all compounds and for all 
endpoints, There are many reasons for this: 

• Many models are poorly developed in many chemical areas. 
This is due to there being a paucity of available toxicity data 
either to build the models, or for their validation. Not only are 
more data required for modeling, but those data need to be of a 
high standard to provide reliable predictive models. An example 
of the gaps that are present in the training sets of the systems is 
that it is only OncoLogic which is able to make predictions for 
constituents such as fibers, polymers and inorganic containing 
compounds. The problem of gaps in the data will be exacerbated 
by the novel chemistries that are being created by combinatorial 
chemistry. It is unlikely that a molecular fragment rule-based 
approach will be able to predict reliably the toxicity of completely 
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novel compounds [10].

 • A considerable amount of expertise is required to interpret 
and validate the results. The basic premise of an expert 
system is that it presents the knowledge of an expert for 
use by a non-expert. It is the contention of the author 
that users of these systems should not, however, be non-
experts. Users require an adequate level of toxicological 
training and expertise. 

• Rule-based expert systems for predicting toxicity may be 
over-predictive. An example of this was the prediction 
of skin sensitization by the DEREK software, which 
predicted a number of non-sensitizers to be sensitizers as 
these compounds contained a structural alert. Reasons for 
the over-prediction include lack of knowledge concerning 
the effect of modulating factors on particular functional 
groups, and lack of permeability assessment. Whilst the 
latter point may be, at least partially, addressed in the 
StAR and HazardExpert systems, more work is required 
to predict membrane permeability. 

 • There is clearly an issue with the role of mechanisms of 
action in making toxicological prediction. Systems such 
as DEREK, HazardExpert and OncoLogic have rule bases 
developed specifically from a mechanistic viewpoint. 
Other systems such as TOPKAT and CASE are less, if at 
all, mechanistically based. The problems of this lack of 
mechanistic basis to the prediction have never, however, 
been adequately addressed or quantified.

 • The commercial environments in which the systems are 
placed, effectively as competitors, does little or nothing 
to assist in the recognition of strengths or weaknesses of 
each of the systems.

 • In many systems there is only limited ability to include 
proprietary data into the rule-base or predictive system. 
Some manufacturers such as CASE and TOPKAT will model 
proprietary data. In other systems, there are opportunities 
to influence the rule-base either by contributing openly 
to the rule base, or by the development of proprietary 
rule bases. Generally, though, these systems require 
mechanisms to allow users more freely to expand and 
contribute to the rule bases. 

CONCLUSIONS 
 Computational toxicology is now widely used for lead chemical 

development, and are capable of providing valuable information 
in drug discovery process. These in silico toxicology experiments 
can play a major role in decreasing time to market, reducing 
animal experiments, assessing late stage attrition, and strategic 
planning of pharmaceutical and chemical development processes. 
Good predictive models for toxicity parameters depend crucially 
on selecting the right mathematical approach, the right molecular 
descriptors for the particular toxicity endpoint, and a sufficiently 
large set of experimental data relating to this endpoint for the 
validation of the model. In the next 10 years or so, the degree 
of automation of in silico modeling and data interpretation will 
continue to increase with the integration of medium- to high-
throughput in vitro and in vivo assays to reduce the risk of late-
stage attrition, and second, to optimize the screening and testing 
by looking at only the most promising molecules.
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