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Abstract

Morphine is one of the first-line therapies used in pain treatment, although its 
side effects and abuse as recreational drug make its use controversial. This opioid is 
involved in several biological processes and has remarkable effects in Central Nervous 
System (CNS) development. In this sense, miRNAs have been postulated as possible 
targets to control the molecular pathways triggered by exposure to morphine. Previous 
research has shown that in zebrafish embryos morphine alters the dopaminergic 
pathway-related genes th, dat and pitx3, as occurs with other drugs of abuse such as 
cocaine. These changes observed lead to a failure in the correct differentiation of the 
dopaminergic neurons. The modification of those genes is similar and it is related to the 
changes induced in the expression of other genes such as wnt1. Besides, morphine is 
also able to alter proliferation by changing the pattern of the proliferative cells around 
the periventricular area. mir133b, mir212 and mir132 are involved in these changes 
induced by morphine during zebrafish CNS development. On the one hand, mir133b 
is strongly related to the dopaminergic system changing the expression of th and dat 
through pitx3 regulation after morphine exposure. On the other hand, mir212 and 
mir132 are altered by morphine administration but they are also involved in oprm1 
and mecp2 expression by targeting their mRNA sequences. This negative regulation of 
Mecp2 induces the over expression of Bdnf. This review highlights the importance of 
assessing morphine effects on development and the key role of miRNAs in this process. 

ABBREVIATIONS
CNS: Central Nervous System; hpf: hours post fertilization; 

miRNA: microRNA; Mo: morphants; NMDA: N-methyl-D-
aspartate; SCI: Spinal Cord Injury; VTA: Ventral Tegmental Area

INTRODUCTION
The opioid morphine, an alkaloid and the main active 

compound of opium, can be obtained from the seed of the poppy 
plant, Papaver Somniferum. This drug has been used for centuries 
as a medical and recreational agent [1] although its use is known 
to cause undesirable side effects on peripheral tissues and on 
the central nervous system (CNS). Moreover, morphine has been 
related to several alterations on the normal development of the 
CNS. These findings have special relevance in relation to pregnant 
women, in which the administration of this drug could induce 
the modification in the pattern of expression of several genes, 

which at the same point could cause alterations in the brain 
structure of the fetus or possibly later neurobehavioral problems 
[2]. In addition, morphine administration has been related to 
alterations in cell proliferation, which is of great relevance in 
oncology patients, in which morphine could induce division of 
tumor cells [3,4]. 

Morphine, as other opioid drugs, mainly exert it saction by 
the activation of the µ opioid receptor (Oprm1) [5-8], inducing 
a molecular cascade that involve several processes, such as cell 
proliferation, apoptosis, alteration in gene expression, epigenetic 
regulation and neuronal differentiation [9,10].

The zebrafish (Danio rerio) is used as an experimental model, 
to study genetics and development and also to study disease-
related pathways, given its easy in vivo manipulation [11,12]. In 
contrast to mammalian embryos, which develop in the uterus 
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and are influenced by the maternal biochemical processes, 
zebrafish embryos develop externally and are protected by 
a transparent chorion, avoiding the maternal effect on these 
embryos and allowing observation of possible morphological 
alterations. This is essential when dealing with drug exposure, 
as the effects observed in mammalian embryos might be due to 
the susceptibility of the mother and not the embryo per se. In 
this sense, the study of the effects of the drugs using zebrafish is 
rapidly growing [13,14]. In relation to opioids, the endogenous 
opioid system in the zebrafish has been characterized including 
a mu opioid receptor (Oprm1), two delta duplicates (Oprd1 and 
Oprd2), a kappa opioid receptor (Oprk) and an opioid receptor 
like (Oprdl) gene [15-18]. Hence, the extensive characterization 
of opioid receptors in zebrafish and the characteristics of this 
model allow us to extrapolate key components of the opioid 
system in the zebrafish to other biological organisms. Besides, 
zebrafish is an excellent model to study early differentiation, 
since the transparent embryos and the fast development allow 
the observation of proliferative and apoptotic cells. Moreover, 
this model is extremely efficient for the study of the response to 
chemicals during the early developmental stages [19,20].

Morphine effects on these processes are mainly exerted 
by the action of CREB, a transcription factor closely related 
to mitotic regulation and the expression of genes involved in 
differentiation, such as nurr1. Morphine administration and 
withdrawal have been related to the alteration of other pathways, 
such as modifications in serotonin levels after the exposure to 
this drug [21]. 

miRNAs are a group of 19-25 nucleotides non coding RNAs, 
which post-transcriptionally regulate gene expression [22,23]. 
miRNAs are evolutionary well conserved and affect 60% of 
mammalian genes, becoming a central topic of research [24-27]. 
In mammals, the binding between miRNAs and their targets is 
inducing the blockage of mRNA translation [28]. In addition, 
the perfect complementarity between both sequences produces 
mRNA degradation [29]. Besides this type of binding, a seed 
region, which represents 2-8 nucleotides from the 5’ end of the 
miRNA, needs perfect complementarity with the target to, at 
least, block translation. Several miRNAs have seed regions which 
bind to several mRNAs [30]. This fact means that a single miRNA 
can control the expression of hundreds of genes.

Current studies concerning miRNAs involve several 
biological functions such as cellular differentiation, development, 
metabolism pathways and disease biogenesis [31-33]. It has 
been described in zebrafish that miRNAs exert a key regulation 
through several developmental stages [34-36].

Here, we summarize some of the alterations that morphine, 
as many other addictive drugs, causes in the development and 
differentiation of the zebrafish CNS. These changes involve 
several pathways, but many of these effects are mediated by the 
alteration of the levels of several miRNAs, which have important 
transcription factors as targets.

Morphine effects in zebrafish development and 
differentiation

Morphine alters dopaminergic differentiation by 
modifying the levels of expression of several transcription 

factors: Drugs of abuse have been related to alterations in the 
levels of biogenic amines [37]. In particular, morphine increases 
dopaminergic neurotransmission in several brain regions, such 
as the ventral tegmental area (VTA) and in the nucleus accumbens. 
These alterations in the dopaminergic pathway are directly 
linked to the addictive properties of morphine [38], and similar 
systems have been described in zebrafish [39]. A specific subset 
of dopaminergic neurons (A11), the far projecting neurons in 
this teleost, is located in the ventral diencephalic and posterior 
tuberculum and expresses specifically the transcription factor 
Otp [40]. The alterations observed in this area after morphine 
administrations are similar to those observed with other 
social used drugs as cocaine. Cocaine has been described to 
alter the expression of several genes involved in dopaminergic 
differentiation, thus modifying the normal development of this 
system [41]. This process is mediated by the alteration of the 
expression of several transcription factors involved in early 
development, such as Ndr2, Otpa/Otpb, and lmx1b1/lmx1b2. 
Ndr2 is known to be a positive regulator of Otp duplicates, and 
its absence induces a complete lack of dopaminergic neurons 
from the pretectum to the posterior tuberculum [42]. Moreover, 
Opta and Optb are required for the correct development of 
dopaminergic neurons [43].

The exposure of zebrafish embryos to cocaine [41] from 5 
to 24 hours post fertilization (hpf) increased the expression of 
both lmx1b1 and nurr1, upregulating the expression of tyrosine 
hydroxylase (th) which results in an increased dopaminergic 
differentiation at this stage. However, if the embryos were 
exposed to morphine until 48 hpf, a downregulation of th 
was observed, probably due to a decrease of ndr2 and optb. 
Cocaine exposure also modified the expression of the dopamine 
receptors of the zebrafish [44]. This alteration of dopaminergic 
differentiation was described to be mediated by the transcription 
factor pitx3. This factor is a positive regulator of th, the dopamine 
transporter (dat) and the dopamine receptors (mainly drd2) [45].

This alteration in dopaminergic differentiation observed 
after cocaine administration was also present after morphine 
exposure [46]. Morphine, via activation of mu opioid receptor 
(Oprm1) regulates several signaling pathways. In particular, 
the mitogen-activated protein kinases (MAPK) are directly 
involved in dopaminergic differentiation, as observed in 24 hpf 
zebrafish embryos. These results showed that after morphine 
administration, the expression levels of th were downregulated, 
and the levels of dat and pitx3 upregulated. These results were 
reversed after the inhibition of the pathway, showing that the 
activation of MAPK was necessary to the correct differentiation of 
these cells. These observations correlate with previous findings 
that relate MAPK and Oprm1 activity with TH activation [47].

Morphine alters other differentiation pathways 
through several genes: In addition to altering dopaminergic 
differentiation in the early stages of the development, morphine 
is known to modify the levels of expression of other transcription 
factors, such as wnt1 [48]. This factor plays an important role 
in the development of the central nervous system, regulating 
neurogenesis and neuronal differentiation. Besides, it is important 
in adult neuronal plasticity [49]. Moreover, Wnt1 has been proven 
to be involved in the differentiation of the dopaminergic neurons 
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[50], thus it may be related with the other alterations previously 
described [48]. Morphine administration downregulates wnt1 
expression in the early stages of development (8 hpf) but induces 
an upregulation at the later stages (16, 24, 48 and 72 hpf). 
However, those changes are not induced by other important 
mitogenic factors such as Shh [48].

In addition to these changes, a microarray study [51] showed 
a differential regulation of several genes in other pathways in 
zebrafish embryos treated with morphine up to 24 hpf. Copb2, 
a gene involved in dopaminergic receptor D1 transport [52], 
was shown to be dysregulated. Moreover, several other genes 
as dao.1, involved in glutamatergic activity and addiction [53] 
was also altered. Another gene down-regulated by exposure to 
morphine and identified as a gene related to oprm1 expression is 
wls, a putative orphan G-protein coupled receptor conserved from 
worms to human [54]. Wls is closely related to development, as it 
can inhibit the secretion of Wnt, indicating that this factor could 
be critical in neuronal development and morphogenesis [55].

Morphine alters cell proliferation and apoptosis: BNIP3, 
a protein related to cell death/survival [56] has been described 
to be altered in zebrafish embryos exposed to morphine [51]. 
The alteration of the normal expression of this gene indicates 
that morphine in zebrafish embryos may produce an unfavorable 
pro-apoptotic state of the neuronal cells. In zebrafish, morphine 
upregulates Bdnf and TrkB at 48 hpf [10]. Also, the proliferation 

pattern of the cells around the periventricular area is altered in 
morphine exposed embryos (Figure 1). This mechanism shows 
that morphine is closely related to proliferation, as described by 
many other authors [57,58].

In addition to the changes observed after morphine 
administration, Oprm1 has an important activity in cell 
proliferation [59]. The knock-down of the receptor altered 
the normal proliferation pattern around the periventricular 
area, in a similar fashion than that observed after morphine 
administration [10]. These results indicate that the endogenous 
opioid system is related to normal proliferation. In addition, 
morphine administration enhances cell proliferation at several 
cell populations at 24 and 48 hpf, and act as a neuro-protector 
against glutamatergic excitotoxicity [60]. However, other authors 
have described a differential regulation of cell proliferation 
depending on the dose used [61]. Low doses of morphine promote 
cell proliferation in undifferentiated SH-SY5Y cells, while higher 
doses inhibited proliferation [62].

miRNAS roles in zebrafish development after 
morphine treatment

mir133b role during development: The characterization 
of mir133 was first done in mice [63], after which its homolog’s 
were discovered in several other species. Three different miR-
133 sequences are known: mir133a-1, mir133a-2, and mir133b.

Figure 1 Morphine effects on cell division and apoptosis after morphine exposure and knocking down mir212 and mir132. The mitotic marker 
phospho-histone 3 (H3-P) (red) and TUNEL technique (green) were used to determine whether morphine treatment (10 nM) alters proliferation 
and apoptosis in the CNS. Changes in the pattern of proliferation (Arrows) were observed between control (A: 1-3) and treated embryos (A: 4-6) at 
48 hpf and mir212 and mir132 morphants (Enlarged in 1ˈ-6ˈ). Mitotic marker and TUNEL positive cells (Enlarged in 1ˈˈ-6ˈˈ) were quantified around 
the peri ventricular area and the midbrain-hindbrain boundary (B-C) (n=3). Cells nuclei were stained with DAPI (blue). Embryos are oriented 
anterior toward the left and posterior toward to the right (A’). Mb: Midbrain. Hb: Hindbrain. Mo: Morphant. Unt: Untreated embryos. Treated: 10 
nM morphine treated embryos. Taken from Jimenez-Gonzalez et al., (BBA General Subjects, 2016).
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Table 1: mir133b involvement in several diseases and biological processes.

Disease Mechanism Role Model Reference

Parkinson disease Axonal degeneration Regulating RhoA/Decreasing α-synuclein 
mRNA levels

Rat dopaminergic neuron primary 
culture/ PC12 cells [62]

Renal carcinoma Apoptosis/Cell viability Targeting JAK2/STAT3 Human renal carcinoma cell lines [63]

Gastric cancer Warburg effect Targeting PTBP1 Human cell lines [64]

Gliobastoma Migration Targeting matrix metalloproteinase 14 Human glioma cell lines [65]

Diabetic nephropathy --- Biomarker Human [66]

Glioma Proliferation Targeting Sirt1 Human Glioma cells [67]
Acute Myocardial 

Infarction --- Biomarker Human [68]

HIV-associated dementia Apoptosis Targeting Hsp70 Rats [69]

Tumor proliferation Mitosis Targeting NUP124 Cell lines [70]

In particular, mir133b plays an important role in several 
diseases and biological processes, summarized in table (1). This 
miRNA has an effect on zebrafish spinal cord regeneration [73] 
since one of its multiple targets is RhoA [74]. This protein increases 
after spinal cord injury (SCI) [64] therefore the inhibition of RhoA 
exerted by mir133b enhances the re-growth of the corticospinal 
tract after SCI. In cancer, mir133b can participate in promoting or 
suppressing tumors. When overexpressed, mir133b can behave 
as an oncogene, inducing tumor cell proliferation [69], or when 
under-expressed, it functions as a tumor suppressor, negatively 
regulating oncogenes [65].

Additionally, mir133b regulates the differentiation, 
maturation, and function of dopaminergic neurons by 
downregulating the homeobox gene pitx3 [75] which is related 
to CNS development. In particular, at 24 h post fertilization, the 
dopaminergic system begins its differentiation and the first TH-
positive neurons are detected [76].

Morphine modulates the expression of mir133b and 
dopaminergic markers through Oprm1 during zebrafish 
CNS development: The analysis of a microarray carried out 
in zebrafish embryos after morphine administration revealed 
a decrease in the expression of several miRNAs at three 
developmental stages: 16,24,and 48hpf. mir133bwas chosen 
due to its reported effect on dopaminergic neurons, an essential 
component in drug addiction processes and CNS development 
[75]. The qPCR validation of mir133b showed its levels were 
decreased in 24hpf embryos exposed to10nMand1 nM morphine. 
The opioid antagonist naloxone did not significantly change the 
expression of this miRNA, but it blocked the effect of morphine, 
proving that the changes in mir133b were mediated by morphine 
binding to the opioid receptors [46]. The transcription factor 
Pitx3 Is a well-known mir133b target. Pitx3 regulates the 
transcription of the dopaminergic markers Th and Dat. Since 
miRNAs normally regulate the stability or the translation of their 
targets, morphine exposure should increase the expression levels 
of these transcripts by reducing mir133b. 

qPCR studies proved that the RNA levels of pitx3, th and dat 
increased after morphine exposure in 24hpf zebrafish embryos 
while the treatment with naloxone effectively abolished the 
morphine induced changes in the expression levels of pitx3, 
th, and dat, suggesting that morphine regulates the level of the 

dopaminergic genes via the control of mir133b. 

In order to establish the role of Oprm1 in regulating mir133b, 
oprm1 was knocked-down by morpho lino oligonucleotide 
injection. The amount of mir133b increases with in embryos 
injected with oprm1 morpholino (morphants). Furthermore, 
1or10 nM morphine exposure did not alter the mir133b level in 
oprm1 morphants while the same concentrations of morphine 
treatment resulted in a decrease of mir133b levels in embryos 
injected with control morpholino. The increased expression in 
mir133b detected in the oprm1 knock-down embryos also led to 
a decrease of the subsequent mir133b targets, i.e., pitx3, th, and 
dat. These results clearly indicate that Oprm1 is the mediator for 
the morphine-induced regulation of mir133b and its targets [46].

mir212/132 cluster role in the molecular cascades 
triggered after morphine administration: mir212 and mir132, 
both codified in the same locus, located on chromosome 10 
in rat and 11 of mouse [78,79]. In humans they also share a 
primary transcript encoded by a locus on chromosome 17 [80]. 
In addition, mir212 and mir132 share the seed region although 
they have specific targets and are regulated by CREB and REST 
transcription factors, so most of their functions are strongly 
related to the neural compartment. In fibroblast culture it has 
been proved that mir132 increases in the presence of negative 
form of REST [81]. Similarly, CREB was firstly identified as 
regulator of this locus in cortical neurons of rats stimulated with 
neurotrophins [79].

Besides, mir132 induces neurite out growth and modulates the 
dendritic morphology of immature neurons in the hippocampus 
and cortex after the inhibition of one of its targets, P250GAP. This 
target (a brain enriched GTPase-activating protein) is important 
in neuronal development as it controls N-methyl-D-aspartate 
(NMDA) receptor signaling [82]. It also modifies the dendritic 
plasticity by controlling MeCP2 expression [83] and this protein 
is fundamental for the correct neural maturation [84]. These 
results show the relevance of this locus in neural morphogenesis.

To determine the relevance of mir212 and mir132 during 
zebrafish development, their temporal expression was studied 
at 5, 8, 16, 24 and 48hpf. Although both are highly expressed, 
mir212expression decreases during development while mir132 
increases from 5 to16 hpf. Besides, the number of copies for 
mir132 is greatly increased at 48hpf when compared to mir212, 
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suggesting the importance of this miRNA at this particular stage 
[7]. The levels of expression of mir212 in zebrafish embryos were 
measured by qPCR after the administration of two different doses 
of morphine (10nM and 10μM). These morphine doses have 
been also antagonized with naloxone, obtaining a clear reversal 
of the opioid effects [60]. At 24 hpf, an increase in the levels of 
the miRNA was observed for both concentrations of morphine, 
although it was higher at10μM. In contrast, mir212 was down-
regulated at 48 hpf. Additionally, the implication of mu opioid 
receptor in mir212 expression was analyzed. After knocking-
down the mu opioid receptor, the levels of mir212 were back 
to normal after morphine administration at 24 hpf. However, 
oprm1 morpholino did not revert the effects of morphine at 48 
hpf. Also, the levels of mir212 were not modified in the control 
conditions in oprm1morphants pointing to the relevance of 
oprm1 for morphine effects on mir212 expression but not in 
its physiological levels. As mir212 expression is affected by 
morphine administration, it was analyzed if this miRNA was 
regulating mu opioid receptor. After morphine treatment, mu 
opioid receptor was strongly up-regulated at 24 hpf. In contrast, 
morphine administration induced a decrease in the levels of 
oprm1 at 48 hpf. However, the knock-down of mir212 induced 
an increase in the expression of the receptor, much higher than 
the observed when mir212 was present at both 24 and 48 hpf [7]. 
10nM morphine exposure increased the expression of mir132 at 
48 hpf. The incubation with opioid antagonist, naloxone, induced 
the opposite effect exerted by morphine exposure, whereas both, 
morphine and naloxone treatment, did not change the levels of 
132 [10]. These results show that morphine is changing both 
mir212 and mir132 by the specific activation of Oprm1.

miR-212/132 cluster regulates oprm1 mRNA expression 
binding to its 3’UTR: In order to determine whether mir212/132 
cluster was effectively regulating oprm1 by targeting its mRNA, 
a bioinformatic analysis of putative binding sites of µ opioid 
receptor was performed [85]. A possible binding site form iR-
212/132 was observed in the 3’UTR of oprm1, as well as an 
additional site in the second exon of the mRNA. By means of 
aluciferase assay it was confirmed that the binding site in oprm1 
3’UTR was actively repressing µ opioid receptor. miRNA mimics 
(small, chemically modified double-stranded RNAs that mimic 
endogenous miRNAs by the up-regulation of miRNA activity) 
were co-transfected with the plasmids inducing a significant 
decrease in the lumine scence on the non-mutated group. 
Moreover, the increase in the concentration of miRNA mimics 
reduced the luciferase activity, but only when co-transfected 
with the wild type plasmid. These results prove that mir212 and 
mir132 are binding to the 3’UTR region of oprm1 mRNA, and 
physiologically repressing oprm1expression [7].

It has been described that mir212 levels are modified after 
cocaine administration in the hippocampal region of adult rat 
brains [86]. These results suggest that the addictive properties 
of cocaine and morphine, and probably other drugs, could be 
controlled by this miRNA. In addition, cocaine has also been 
related to the alteration of the levels of expression of mir-let7d in 
zebrafish embryos [87] and with the regulation of oprm1 mRNA 
expression in mice [88].

mir212 expression is regulated by MAPK, calmoduline 
and PKA: To analyze in detail the signaling cascade triggered by 
the activation of Oprm1, the levels of both mir212 and oprm1 were 
studied after the co-administration of morphine and inhibitors 
of MEK1/2 and calmoduline or an activator of PKA pathway [7]. 
mir212 quantification revealed the relevance of MEK1/2 on its 
expression after morphine treatment at 24 hpf. CaM/CaMKII and 
PKA also showed an effect on mir212 expression at 24 hpf but 
not 48 hpf. oprm1 did not change at 24 hpf while its expression 
decreased in all the experimental groups at 48 hpf. These results 
point to the great relevance of the developmental stage analyzed 
and the importance of MEK1/2 and the balanced effect between 
CaMKII and PKA on the expression of mir212 at the earlier stages.

Bdnf and TrkB expression analysis after morphine 
exposure and in miRNAs morphant embryos: The modification 
induced by morphine in the localization of mitoticcells at 48 hpf 
points to a possible role of neurotrophins in morphine effects 
(Figure 1) [10]. It has also been observed that miR-132 and miR-
212 are regulating the pattern of expression of proliferating cells 
around the periventricular area in 48 hpf zebrafish embryos. 
As miR-212/132 cluster has been previously related to Bdnf 
pathway [80], Bdnf and Trk Bexpressions were studied in mir212 
and mir132 morphants. Inaddition, oprm1 morphants were 
also analyzed to assess if Oprm1 is one of the possible effectors 
in the changes induced by morphine in the expression of Bdnf. 
In all groups, a significant decrease of Bdnf expression was 
found. When TrkB was analyzed, the levels in control embryos 
were higher after knocking down mir212, where as morphine 
treatment induced a decrease in the levels of this protein in those 
morphants. No significant changes could be observed in the 
expression levels of TrkBin mir132 or oprm1morphants.

Bdnf expression is inhibited by MeCP2, which was firstly 
identified as an epigenetic factor which binds to methylated DNA, 
avoiding its transcription [86] and bioinformatic predictions 
showed a target region for both miRNAs in the third exon of the 
mecp2 sequence. In this sense, a luciferase assay confirmed the 
regulation of mir212 and mir132 on mecp2 gene expression.

DISCUSSION AND CONCLUSION
The use of morphine is known to cause undesirable effects, 

which includes changes in cell proliferation (modification in the 
number of dividing and apoptotic cells) and in the differentiation 
of several neuronal populations. In the last years, zebrafish has 
been proven to be an excellent model to study these processes 
triggered after morphine administration.

Morphine, as well as other drugs of abuse, is known to induce 
alterations in the dopaminergic and serotoninergic positive 
cells. These changes are mediated by several transcription 
factors such as CREB, nurr1 or pitx3, which are also involved in 
the responses after cocaine intake. These modifications in the 
normal development of those specific neuronal groups observed 
in zebrafish embryos are likely related to the appearance of the 
addictive symptoms.

Moreover, miRNA alterations observed after drug exposure 
also interfere with the normal physiological development, 
through the modification of the levels of expression of their 
targets. mir133b has been related to alterations in zebrafish 
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development through the transcription factors pitx3 and wnt1.
Besides, mir212 and mi132 are involved on the expression of 
neurotrophins such as Bdnf and TrkB through Mecp2 expression, 
and can also modify the number of proliferative cells around the 
periventricular area of the zebrafish hindbrain. Hence mir133b, 
mir212 and mir132are novel regulators of morphine effects 
during two relevant stages of zebrafish development (24 and 
48 hpf). These findings have also established a relationship 
between these miRNAs and several systems with key roles for 
CNS formation such as opioid, dopaminergic, neurotrophins and 
several other regulatory pathways. 

Here we have discussed the most relevant contributions 
highlighting the importance of miRNAs in cell proliferation 
and differentiation using zebrafish as a research model. These 
processes are involved in morphine response and may be related 
to tolerance and the appearance of addiction. Thus, the better 
understanding of these mechanisms could lead to the design 
of new drugs lacking the drawbacks that the chronic use of 
morphine induces.
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