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Abstract

High arsenic (As) fluoride (F-) nitrate (NO3
-) and salinity concentrations in groundwater 

are widespread problems in different part of Indian states. The various types of 
geological settings, hydro-chemical and diversified litho-logical characteristics as well 
as climatic condition are major responsible factors for enrichment of these contaminants 
in aquifer system. However, groundwater of Ganga–Meghna-Brahmaputra basin is 
in more vulnerable condition due to geogenic contamination. Furthermore, alluvial 
aquifers viz. Holocene alluvial and deltaic sediments are more contaminated due to the 
high concentration of arsenic, fluoride and nitrate. The mechanism of release of these 
contaminants in groundwater have been identified where numerous bio-geo-chemical 
process especially oxidation of sulphide mineralsis responsible for releasing of arsenic, 
weathering of granitic complex rocks are responsible for fluoride and leaching of 
agricultural waste is responsible for nitrate concentration in groundwater. In addition, 
evaporation, dissolution, precipitation, adsorption, co-precipitation, ion-exchange, 
oxidation-reduction and nature of aquifer have been identified as responsible factors 
for availability of these contaminants in the groundwater. Similarly, groundwater 
salinity problem has been detected in arid and semi arid as well as coastal region of 
India which is mainly due to over exploitation of groundwater. In this study, we have 
broadly discussed about the mechanism of release of these contaminants and their 
responsible factors with the help of different published research papers. 

INTRODUCTION 
Groundwater is considered as reliable source of fresh water 

which is easy to accessible for various purposes of human 
beings such as domestic, industrial, irrigation, propagation of 
fish etc [1]. Worldwide, approximately 1.5 billon peoples are 
directly or indirectly depend on the groundwater for their 
domestic and agricultural needs [2]. However, in last few 
years variety of geogenic contaminants in groundwater have 
been reported throughout globe [3-9]. Groundwater quality is 
generally controlled by geology, aquifer characteristics, climate, 
topography, sub-surface activities, and various geochemical 
processes [10-14]. The geochemical process like dissolution, 
hydrolysis, precipitation, adsorption and ion exchange, as well 
as oxidation-reduction and biochemical reaction are major 
controlling factors for the chemistry of groundwater [15]. It is 
quite interesting, about 80% rural and 50 % urban people of India 
directly depends on the groundwater whereas 56 % rural Indian 
access potable water from tube wells, 14% from open wells 
and 25% by supplied water system [16-17]. The groundwater 
contamination due to high concentration of fluoride (F-), arsenic 

(As), nitrate (NO3
-) and salinity has been immerged groundwater 

problem in India [18]. 

Arsenic groundwater contamination has got great attention 
in last few years because of carcinogenic nature and millions of 
persons residing in the arsenic prone zones throughout globe 
[19]. Geographically large areas of Indian states are affected 
by arsenic contamination [20]. Similarly, next important 
contamination is fluoride due to their toxicity, persistent capacity 
and accumulation in human bodies [21,22]. In last few decades, 
both contaminants present as major harmful contaminants 
in groundwater which affect millions of people in India [6]. 
Furthermore, nitrate is one of the most omnipresent chemical 
contaminant in many parts of world aquifers which especially 
arise from intensive agriculture, unsewered sanitation [23]. 
Salinity is not much harmful for human health as compare 
to other geogenic contaminants but it may be dangerous for 
ecosystem and soil productivity. Groundwater salinity is the 
widespread problem in India especially in western, north-
western and southern part of India [24]. These evidences clearly 
indicate that such contaminants directly or indirectly related to 
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geogenic sources. Therefore, it is important to understand the 
hydro-geochemistry of the groundwater which may be helpful 
to evaluate the parent source of contaminants. In this study, 
we summarized some relevant works to indicate the geological 
relation with groundwater contaminants in context of Indian 
states. 

Hydro-geological settings of aquifers 

The groundwater characteristic in Indian states is very 
complicated due to numerous types of geological settings, 
diversified litho-logical characteristics, different climatic 
condition and various hydro-chemical conditions [25]. Figure 
(1) shows broad distribution of seven hydro-geological settings 
which describe groundwater topology of Indian states. The 
number of geological characteristic may also increased because 
many parts of Himalayan regions are still untouched with respect 
to geological classification [26]. However, India can be grouped 
under two broad hydrogeological units, namely porous and 
fissured formation based on the different hydraulic parameters. 
Further, porous formation has been classified into unconsolidated 
and semi consolidated formations which is covered by alluvial 
sediments of river basin and arrow valleys or structurally 
faulted basins. Similarly, fissured formation occupy almost 
two-third region of the country which form four groups such as 
igneous and metamorphic rocks, volcanic rocks, consolidated 
sedimentary rocks and carbonate rocks [27]. However, geological 
information of different part of Indian states is much diversified 
with different geological age and formations which control 
the hydrological condition of the particular areas (Table 1). 
Archaeans including Archaean Complex, Dharwars, Aravallis and 
associated gneisses and granite are geographically distributed 
over two third of peninsular India. It is one of the mineral rich 

areas of India which composed of coal, iron, copper, uranium and 
antimony. Furthermore, Cuddapahs, Vindhyans, Gondwanas, and 
Deccan traps are the second most geographically distributed in 
remaining peninsular areas [27]. Similarly, various types of litho-
logical characteristics have found in India. There are six different 
types of soils found in India such as alluvial soils (occupied ~43% 
of the India), Black soils (occupied ~15% of the India), Red soils 
(occupied ~18.5% of the India), Laterite soil, Mountain soil and 
Arid soil (Figure 2) [28]. 

Nevertheless, groundwater contamination may result 
from various aquifer materials including presence of high 
concentration of contaminants in particular rock matrix [29]. 
Presently, Central Ground Water Board (CGWB) has adopted 
fourteen principal aquifer systems in India based on rock types, 
geology and terrains [27]. Thus, diversified hydro-geological 
settings of Indian states leads to complexity which is very difficult 
to evaluate and understand the exact source of contaminants in 
the groundwater [26]. In India, overexploitation of groundwater 
is greater than or closer to aquifer recharge rate [30]. Therefore, 
understanding of hydro-geochemistry is important for tracing 
the origin and pathways of groundwater chemical contaminants. 

Groundwater geogenic contaminants 

Arsenic (As): Groundwater As contamination has been get 
great attention in last few decades because of their carcinogenic 
nature and serious health concern. Furthermore, arsenic is 
recognized as one of the most serious inorganic contaminants of 
groundwater [31]. Approximately ten million people worldwide 
are residing in the risk zone of this metalloid [7,32]. Groundwater 
arsenic contamination is an emergent endemic contaminant in 
the various countries such as India, China, Mexico, Argentina, and 
Bangladesh [6]. There are various studies that investigated the 

Figure 1 Hydro-geological settings of Indian states [25,26].
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Table 1: Hydrogeological characteristics and rock compositions in Indian states [27].

Geological Age/
Formations Rock Formation/composition Hydrological characteristics Name of States

Jurassic (Rajmahal Traps 
and Deccan Traps)

Basalts, Dolerites, Diorites and 
Basaltic magma Quartzite

Unconfined shallow aquifers and leaky 
confined/confined deeper aquifers

West Bengal, Jharkhand, Gujarat, 
Maharashtra, Andhra Pradesh, Madhya 

Pradesh, Karnataka
Pre-Cambrian 

(Cuddapah, Vidhyans, 
Delhi, and Malani 

Volcanics)

Sandstones, Dolomites, 
Shales, Limestones, Marble,  
Conglomerates, Intrusive-

Granites

Granites and granite gneisses are the 
most productive aquifers Occur in all states

Archaean (Archaean 
Complex,  Dharwars, 

Aravallis)

Granites, Quartzites, Gneiss, 
Schists, Hematite Charnokites, 

Phylites, Khondalites, Granulites,

Granites and granite gneisses are the 
most productive aquifers Occur in all states

Tertiary

Nummulitic shales, Limestones, 
Ferrugineous, Carbonaceous 

shales, Sandstones shales and 
Conglomerates

Lower Siwaliks (not potential aquifers) 
Upper Siwaliks (moderate potential 
aquifers) and Tertiary sandstones 

(moderate to good potentials)

Himachal Pradesh, Jammu & Kashmir, 
Assam, Punjab, Haryana, Uttar Pradesh, 

Sikkim, Kutch, Rajasthan, Gujarat, Orissa, 
Kerala, Tamil Nadu, Andhra Pradesh, West 

Bengal

Upper Carboniferous to 
Jurassic

Gondwanas Jurrasic of Kutch 
and Rajasthan, Bagh-beds and 

Lametas
Moderately to good potential aquifers

Maharashtra Andhra Pradesh, Rajasthan, 
Orissa, Madhya Pradesh, Chhattisgarh, 

Gujarat, Tamil Nadu

Pleistocene to Recent Fluvio-Glacial deposits, Glacio- 
Lacustrine deposits Significant hydrogeological potential Interior Himalayas and Karewas (Kashmir 

Valley)

Piedmont and Himalayan Foot 
Hill deposits Sand aquifers and deeper aquifer Alluvial plains in south. Tarai belt is down 

slope continuation of Bhabhar

Alluvial Plains (Older & Newer 
Alluvium) Highly productive aquifers

Occur widespread in the Indo-Ganga-
Brahmaputra alluvial plains peninsular 
rivers and major rivers on the eastern 

Gujarat

Aeolian deposits (Sandstones) Moderate to high yield potential 
aquifers and poor recharge capacity

West Rajasthan, Gujarat, Haryana, Delhi, 
Punjab

Figure 2 Distribution of major types of soil in India.
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groundwater arsenic problem in India [6,32-35]. The occurrence 
of high arsenic in groundwater has been reported in various 
states of India such as West Bengal, Bihar, Chhattisgarh, Uttar 
Pradesh and North Eastern States [36]. In the West Bengal, 
79 blocks in 8 districts have high arsenic concentration in 
groundwater which is beyond the permissible limit of 0.05 mg/l. 
The eastern side of Bhagirathi River (Malda, Murshidabad, Nadia 
and North/South 24 Parganas) and western side (Howrah, Hugli 
and Bardhman) are the most affected areas of West Bengal 
[37]. The higher concentration of arsenic is also accounted in 
Ganges–Gaghra plain especially at Ballia district in eastern Uttar 
Pradesh and Bhojpur, Buxar and Shahebganj districts in Bihar 
[36,38]. Furthermore, elevated level of arsenic has been detected 
in twenty-four districts of Assam, three districts of Tripura, six 
districts of Arunachal Pradesh, two districts of Nagaland and one 
district of Manipur [36]. Therefore, arsenic contamination has 
been well established in the Ganga–Meghna-Brahmaputra delta 
basin because majority of the states lies within this delta which has 
high contamination of arsenic in groundwater which mainly due 
to various biogeochemical processes and deposition of sulphide-
rich sediments [39]. In view of Principal Aquifer Systems, alluvial 
aquifers (Holocene alluvial and deltaic sediments) are mainly 
affected by high concentration arsenic [40]. 

In the groundwater, arsenic usually derives from sedimentary 
rocks, weathered volcanic rocks, geothermal areas and fossil 
fuels [41]. Arsenic is also present in more than 320 minerals and 
generally found in arsenopyrite, orpiment, realgar and pyrite 
solid solutions [42]. The list of major arsenic minerals which are 
occurring in the geological environment tabulated in (Table 2). 
Arsenic generally comes from the geogenic sources but release 
mechanism is not well understood [5,43]. However, mobilizations 
of arsenic in groundwater generally depend on variety of 
controlling factors (Figure 3) such as dissolution, precipitation, 
adsorption, co-precipitation, oxidation and reduction [5]. In 
general, reductive dissolution of Fe oxides in sedimentary 

environments is most acceptable mechanism for releasing as in 
groundwater which occurs under anaerobic conditions [32,44]. 
However, alluvial aquifer at shallow depth is highly vulnerable 
for groundwater as contamination [5]. Groundwater of West 
Bengal basin in India is one of the most affected provinces of 
geogenic arsenic contamination [6]. The oxidation of sulphide 
minerals considered as one of the most natural processes which 
caused groundwater arsenic contamination in this area [45]. 
In this case, oxidative weathering and dissolution of arsenic 
containing minerals viz. arseno-pyrite in the shallow aquifer 
releases inorganic As (V) and As (III) ions in aquifers [46]. The 
releasing mechanism of As (III) in the aquifers is very complex 
due to involvement of various factors such as biological (microbial 
mediated reactions), chemical and electrochemical reactions 
and hydrodynamic factors [42]. In this hypothesis, the possible 
mechanism of arsenic in groundwater is given below;

( ){ }( )

( )

( )

( )

2 3
3 4 3

3

3 2 2 2
2 4 4

2

Fe Fe OH AsO ,  AsO

Fe OH

Fe As,  S   13Fe  8H O 1 4Fe  HAs O  SO  15H
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+ +

+ + − − +

↑

↑

+ + → + + +

↓

The reductive dissolution of Fe oxyhydroxides hypothesis 
for arsenic release in the groundwater was introduced by [47]. 
They proposed that the mobilization of arsenic in such a case 
generally happened in the reducing environment [48]. However, 
many researchers also found similar results of releasing As 
which support this mechanism [3,5,7,35]. The good correlation 
between as and HCO3

- also observed by some researchers which 
support this reduction mechanism [49]. The chemical reaction of 
As release through this mechanism is given below;

Table 2: List of major arsenic minerals present in nature [47].
List of As containing 

minerals Composition Occurrence

Native arsenic As Hydrothermal veins

Niccolite NiAs Vein deposits and norites

Realgar As2S2 Vein deposits associated with orpiment, clays and limestones

Orpiment As2S3 Hydrothermal veins, hot springs, volcanic sublimation product

Cobaltite CoAsS High temperature deposits, metamorphic rocks

Arsenopyrite FeAsS The most abundant As mineral

Tennantite (Cu,Fe)12As4S13 Hydrothermal vein

Enargite Cu3AsS4 Hydrothermal vein

Arsenolite As2O3 Secondary mineral formed by oxidation of arsenopyrite

Clauderite As2O3 Secondary mineral formed by oxidation of realgararsenopyrite

Scorodite FeAsO4
.2H2O Secondary mineral

Anabergite (Ni,Co)3(AsO4)2.8H2O Secondary mineral

Hoernesite Mg3(AsO4)2.8H2O Secondary mineral, smelter wastes

Haematolite (Mn,Mg)4Al(AsO4)(OH)8 Secondary mineral

Conichalcite CaCu(AsO4)(OH) Secondary mineral

Pharmacosiderite Fe3(AsO4)2(OH)3.5H2O Oxidation product of arsenopyrite
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Figure 3 The arsenic cycle and its influence on the water resources.

( )
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Further, desorption of Fe-oxyhydroxides for releasing As 
from Fe oxyhydroxides especially at pH greater than 8.5 has been 
reported as cause for the mobilization of As from Fe-oxides [50-
52]. The equation of desorption of Fe-Oxydroxides for releasing 
as is given below;

3 2FeOH  As  FeOAs  H+ + ++ → +

Fluoride (F): Undesirable concentration of fluoride in 
groundwater is one of the most natural groundwater quality 
problems in many parts of the world [53]. There are 200 million 
people of 25 nations residing in the risk zone of high fluoride 
concentrated groundwater [54]. A number of studies have been 
reported for groundwater fluoride problem in Indian states 
such as West Bengal [55,56], Andhra Pradesh [53,57], Rajasthan 
[58-60] and Tamil Nadu [29,61-62]. In the West Bengal, high 
concentration of fluoride (> 1.5 mg/L) is reported in some 
parts of the quaternary alluvial aquifers in Birbhum district 
due to presence of Granitic Complex and porphyrytic granitic 
gneiss rocks in Rajmahal volcanic trap along with favorable 
physico-chemical condition [55,56]. In Andhra Pradesh, various 
influencing factors have been detected for the occurrence of 
fluoride in the groundwater such as semiarid climates condition, 
evaporation, evapo-transpiration, precipitation of salts, rock-
water interaction with the aquifer material and agricultural 
fertilizers [63,64]. Similarly, presence of alluvial plain, granite 
and gneisses rocks including topography of the Thoothukudi 
and Erode district as well as Amaravathi river basin, Tamil Nadu 
plays a major role in dissolution and leaching of fluoride into 
the groundwater [29,65]. Furthermore, presence of granitic or 
sandstone dominant aquifers in the Rajasthan is considered to be 
the main cause for fluoride in groundwater in this region [58,59].

Fluorite is colourful mineral commonly known by fluorspar 
which is naturally found with apatite ore. It is widely used in 
the aluminium production as an additive for electrolysis [66]. 

The mobilisation of fluoride in the groundwater depend on the 
numerous hydro-geochemical processes (Figure 4), such as rock-
water interaction, infiltration of contaminated surface water 
from river, lake, streams, intrusion of seawater and geothermal 
fields [6]. However, dissolution, hydrolysis, precipitation, 
adsorption, ion-exchange, oxidation-reduction and biochemical 
reaction are important factors which influence the groundwater 
chemistry [15]. The major geogenic sources of fluoride are 
igneous and metamorphic rocks while, sedimentary formations 
also contribute least amount of fluoride in fluorine enriched clays 
and fluorapatite [67]. Furthermore, fluoride hosted rocks such 
as graniticsellaite, fluorite, cryolite, fluorapatite, apatite, topaz, 
fluormica, biotite, epidote, amphibole, pegmatite, mica, clays, 
villuanite, phosphoriteand sandstone are important geogenic 
sources of fluoride in the groundwater [68,69]. Nevertheless, 
the mechanism of fluoride dissolution process is still not well-
understood [66]. Several researchers have described about the 
releasing mechanism of fluoride in the groundwater. Generally, 
high concentration of fluoride in groundwater detected in the 
high evaporation and low rainfall region from arid to semi arid 
part of the world [13]. Fluoride once deposited and released into 
the soil and leached into groundwater, may increase fluoride 
concentration, until fully saturated in the water [61]. 

2
2Ca  2F  CaF+ −+ ⇔

High alkalinity in groundwater enhances mobilization of 
fluoride from fluorite rich rocks and increases the solubility of 
CaF2 because of calcium carbonates precipitation in water [70]. 
Furthermore, high concentration of bicarbonates in groundwater 
also enhances the dissolution of fluoride in groundwater [66,71-
72].

2 3 3 2 2CaF  2NaHCO  CaCO  2Na  2F  H O  CO+ −+ → + + + +

2 3 3 2 2CaF  2HCO   CaCO  2F  H O  CO−+ → + + +

Some fluoride containing minerals like mica and amphiboles 
are well known for displacement of fluoride ion with OH- ion in 
the alkaline water [73,74]. The mechanism of the replacement 
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Figure 4 The fluoride cycle and its influence on the water resources.

Figure 5 The nitrogen cycle and its influence on the water resources.

of fluoride and OH- ion from the muscovite and biotite is given 
below; 

Muscovite:

3 3 10 2 2 2 2 5 32
KAI Si O OH ,  F  CO  2.5H O  1.5AI Si O  K  HCO  2F− − −  + + → + + + 

Biotite:
[ ] [ ]3 3 10 2 3 3 10 2KMg AISi O F  2OH   KMg AISi O  OH  2F−+ − ↔ +

Nitrate (NO3
-): Nitrate naturally presents in moderate 

concentration in various environments and is the ubiquitous 
chemical contaminant in the world’s aquifers [75]. In the 
groundwater, the level of nitrate has been increased in last 
three decades [76] as a result of the intensive use of fertilizers, 

agricultural runoff, refuse dump and contamination with human 
or animal wastes [77]. Furthermore, some amount of nitrogenous 
compounds leaches into the groundwater through septic 
systems and leaking municipal sewers [78]. Nitrate groundwater 
contamination has become a serious problem in many parts 
of the Indian states. The elevated level of nitrate (> 45 mg/L) 
in groundwater has been reported in different parts of India 
[77,79-81]. Large portion of the western Rajasthan viz. Bhilwara, 
Rajsamand, Udaipur and Dungarpur belt is highly affected by 
nitrate contamination (40 to1000 mg/L) of groundwater [82]. 
Small pockets of high nitrate containing ground waters are found 
in Jhalawar, Bundi, and Baran belt of eastern Rajasthan [83]. 
However, the enrichment of NO3

- in groundwater also has been 
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reported in agriculturally intensive areas in West Bengal [80], 
Uttar-Pradesh [77,84], Punjab [85], Haryana [86] and Andhra 
Pradesh [87]. They concluded that the elevated concentrations 
of nitrate in groundwater along these regions are mainly due to 
extensive application of nitrogenous fertilizer. 

Nitrate is most ubiquitous form of nitrogen that is highly 
mobile in water [88]. However, the distribution of NO3

- in 
groundwater is controlled by a number of factors (Figure 5) 
such as hydro-geological setting, thickness and composition of 
the vadose zone, precipitation, irrigation, groundwater flow, 
land-use pressure, soil type, aquifer heterogeneity, dissolved 
oxygen concentrations and redox potential conditions [75]. 
High concentration of nitrate in groundwater is generally found 
in unconsolidated aquifers due to their unconfined nature and 
shorter travel time than bedrock aquifers [89]. Some studies 
revealed that the unconsolidated aquifers have greater affinity 
for NO3

- because of leaching of NO3
- through the coarse grained 

deposits [90]. Furthermore, the higher permeable aquifers are 
more prone to NO3

- contamination as compared to the lower 
permeable aquifers [91]. However, in the nitrification process 
NH4

+ is converted into NO2
- and consequently NO3

- during 
microbial oxidation process [78]. 

4 2 2 2NH  1 ½ O NO  H O  2H+ ++ → + +

2 2 3NO  ½ O NO− + →
Furthermore, NO3

- can be derived from NH4
+ especially when 

the concentration of NH4
+ higher than 0.15 mg/L in groundwater 

and commonly referred to as nitrification [92]. Some NH4
+ may 

be lost due to assimilation into bacteria and sorption to clay 
minerals as wells as loss through volatilization.

4 2 3 2NH  2O  NO  H O  2H+ − ++ → + +

Salinity: Salinity is another important groundwater 
contaminant but it does not cause serious health effects as 

compared to other geogenic contaminants. However, arid and 
semiarid zones are largely affected by salinization especially 
coastal aquifers [93]. Salinity problem has been detected in 
western, north-western and southern part of India where almost 
all major aquifer system (Alluvium, Granite, Schist, Shale and 
also in Deccan Traps and Limestone) is affected by salinization 
[94]. Groundwater salinization is very complex process, 
which is directly or indirectly related with regional geological 
characteristics and climatic conditions (Figure 6). Approximately 
1.90 lakh km2 areas of India states like Haryana, Delhi, Uttar 
Pradesh, Karnataka, Punjab, Rajasthan, Gujarat and Tamil Nadu is 
affected by salinity [95]. Furthermore, saline-water intrusion in 
coastal areas has been reported in the states of Tamil Nadu, West 
Bengal, Orissa, Gujarat and Andhra Pradesh due to over-pumping 
of groundwater at large scales [94].

Several studies have identified a number of major responsible 
factors which has potential to enhance the salinity in groundwater 
such as vaporite dissolution, downward leakage from surficial 
saline water, improperly constructed wells deep brines or 
upward flow from deep saline water and fossil sea-water [96]. 
In coastal areas, the occurrence of sea water intrusion and sea 
spray enhances salinity in groundwater [97]. However, coastal 
areas, which are more prone to groundwater salinization by 
seawater intrusion due to over exploitation of groundwater and 
may cause deterioration of, water quality for future exploitation 
[98]. Furthermore, when seawater imposes into the aquifer the 
subsequent reverse ionic exchange reactions occur [99].

( ) ( ) 22Na K   Ca  2Na K   Ca+ + + ++ = +

( ) ( ) 22Na K   Mg  2Na K   Mg+ + + ++ = +

Further, salinization by groundwater seepage has been a 
major water quality problem for a long time [100]. Upward 
leakage from a deeper confined aquifer into a shallow aquifer 
water-bearing horizon may also result of high salinity in 

Figure 6 Mechanism of groundwater recharge and salt-water intrusion.
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groundwater [101]. The groundwater salinity is also affected 
by climatic condition such as evaporation of surface water from 
shallow basins of arid and semiarid zones may concentrate salt 
content in the groundwater [102].

CONCLUSION 
Keeping in view, the rapid expansion of geogenic contaminants 

viz. arsenic, fluoride, nitrate and salinity in groundwater in 
different parts of Indian states may result into serious health 
hazards to the large population in that area. The present study 
reveals that agriculture-derived nitrate pollution has dynamically 
changed the groundwater chemistry due to leaching of NO3

- from 
this nonpoint source pollution. Further, arsenic and fluoride 
contamination in a vast area of the Ganges and Brahmaputra 
basin probably derived from geogenic origins. In addition, large 
portion of alluvial plain are highly contaminated with theses 
contaminants which can cause detrimental condition of aquifers 
that will be hazardous for population in future. Similarly, 
increasing trend of salinity in Indian aquifers needs some 
immediate remedial measurements for proper management of 
water. The integrated research should be applied to understand 
the sources, release mechanisms, and mobilization of these 
contaminants in the aquifers. However, this study will be helpful 
to understand the geogenic contaminants and their mechanism 
of availability in Indian aquifers to a great extent. 
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