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Abstract

Introduction: Finding products that control viral replication directly or indirectly on SARS-CoV-2 infection remains a challenge. Potassium Ribosate (RK), which has been shown to 
have an enhancer effect in limiting replication and viability in cancer cells, also appears promising for altering viral replication.

Methods: To determine its activity against SARS-CoV-2, an inhibition test was performed using 26 strains obtained from clinical samples of patients isolated on the Vero E6 
cell line. For this, the strains were diluted in series and treated with 125mM of RK. Ribosate was administered in a single concentration (125 mM stock) in two ways: 24 hours before 
infection and in the culture medium after removal of the infectious inoculum. The culture medium was changed 3 days after inoculation. Seven days after inoculation, a visual reading of 
the cytopathic effect (CPE) and RT-qRCP was performed to calculate the viral load. The reduction of 3log (9Ct) between control and the Treaty was considered a very good response. 

Results: Of the 26 evaluable strains, a reduction in viral replication was observed in 13 (50%) and 16 (61.5%) of the pretreatment and treatment study (p=0.29). This response 
was good or very good in 10 (38.4%) and 11 (42.3%) (p=0.4), respectively. 

Conclusion: RK administration reduced the viral load of SARS-CoV-2 cultures in Vero E6 cells in more than half of the cases tested.

INTRODUCTION

One of the current challenges in SARS-CoV-2 
infection is finding reagents/drugs/products that 
control viral replication directly (antivirals) or indirectly 
(immunomodulators).

Numerous reviews of SARS-CoV-2 have been conducted 
in the scientific literature [1a,b,c]. All this knowledge is of 
relevance to the identification and understanding of this 
disease in the face of the different treatments that may 
continue to emerge. This background evidence shows that 
the immune response and possible early evasion play a 
crucial role in decreasing the viral load or infectious dose 
that governs disease severity and transmission [2a,b,c].

Potassium Ribosate (RK), is a compound that has 
been studied for several years by the Biochemical 
Research A.E.I.E., in collaboration with the Valsé Pantellini 
Foundation. These structures have been developing 
research projects based on Potassium salts, in particular 
Potassium Ascorbate and Potassium Ribosate, for several 
years on the basis of the studies of the Italian biochemist 

Gianfrancesco Valsé Pantellini in the second half of the last 
century and published between 1970 and 1999 [3-6]. The 
main objective of the above-mentioned projects was to 
assess the impact of these molecules to try to both prevent 
and combat degenerative pathologies, in particular 
oncological ones. Over the years, collaborations have been 
launched that have produced encouraging results both “in 
vitro” [7-15] and “in vivo” [16-19], developing a rational 
rationale for the use of these molecules [18]. We know that 
potassium is a very important metabolic regulator [20-
22], but is particular characteristic of stabilising telomeres 
through the so-called G-quadruplexes seems less well 
known [11-14,23a]. 

It is this last feature that has allowed to focus 
attention on viral issues, with special attention to SARS-
CoV-2, assuming that Potassium may interfere with 
viral replication thanks to its action of maintenance and 
stabilisation of the genetic structure, inhibiting or limiting 
retrotranscription [23b]. The mechanism underlying this 
action is the physical process of resonance, within the 
biophysical paradigm of living systems [23c]. In this way, 
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Potassium Ribosate could be used as a therapeutic method. 
It should be noted that preliminary tests in mice treated 
with RK showed no acute toxicity of the compound (Acute 
Toxicity Study, according to GLP regulations) [23d,e].

Therefore, a study has been developed to assess 
the influence of RK on SARS-CoV-2. The Virology 
section of the Microbiology laboratory Services of the 
Hospital Universitario Central de Asturias (HUCA) and 
the Foundation for Biosanitary Research of Asturias in 
conjunction with Biochemical Research A.E.I.E. developed 
an in vitro viral growth inhibition assay to monitor whether 
the active ingredient RK increased the resistance or 
defence capacity of the cell against SARS-CoV-2 infection.

MATERIAL AND METHODS

Material 

All assays were performed in the biosafety laboratory 
of the Virology Section of the HUCA under appropriate 
safety conditions. 

In order to carry out the different inhibition assays 
and to quantify the effectiveness of aqueous Potassium 
Ribosate (Biochemical Research A.E.I.E., Spain) against 
the SARS-CoV-2 viral pathogen, a total of 29 strains were 
used, which were processed at three different times in the 
following way: 6 different strains in assay-1, 8 different 
strains in assay-2 and 15 strains, also different, in assay-3. 
These strains belonged to variant B.1.1.1.1.7 (α), all these 
strains were isolated from clinical samples in established 
Vero-E6 cell line, according to standardised protocols 
and stored in the viral section’s biobank. Classification 
of the variants corresponding to each of the strains was 
performed either by allelic discrimination techniques or 
by sequencing, according to the protocol of the Section. 

Methods

For the inhibition assays, the viral titre of each strain 
was determined before or at the same time as the assay, 
depending on the needs of the moment (as determined 
later).

Once the titre of each strain was determined, the 
inhibition study was carried out according to classical 
methods adapted in the laboratory [24].

a) Strain titration

Strains of all SARS-CoV-2 viruses were titrated for 50% 
CI according to inoculation assays in 96-well plates with 
confluent cell substrate (Vero-E6 cells). For this, starting 
from a viral culture, decreasing dilutions of the virus were 

Figure 1 Images of cultures: (1) Uninfected Vero E6 cells; (2) CPE of titre -2 of 
a strain at 7 days; (3) CPE of titre -5 at 7 days.

made in base 10 and 200μl of the inoculum was inoculated 
into the wells of the plate. They were then incubated at 
37°C for 1 hour in a 5% CO2 atmosphere. The inoculum 
was then removed and incubated for up to 7 days under 
the conditions described above.

Viral growth was determined by DBS, Neutral Red and/
or PCR.

(a.1) Cytopathic effect (CPE)

The Karber Method was performed by visualizing the 
cytopathic effect produced by the infection and calculating 
the IC 50% (Figure 1).

 (a.2) Vital dye (Neutral red)

To assess viral infection more accurately, the Neutral 
Red vital dye uptake method was sometimes applied: after 
7 days of infection in the 96-well plate, 50μl of a buffered 
Neutral Red solution was added to each well. The plates 
were incubated for 45 minutes at 37°C and in a 5% CO2 
atmosphere. Subsequently, the medium was removed, 
and the wells were washed twice with PBS. Finally, 150μl 
of ethanol phosphate buffer was added to elute the vital 
dye incorporated by the viable cells. The absorbance was 
read at 550nm (reference value of 620nm) on a PR 4100 
spectrophotometer.

(a.3) Genomic detection and quantification: real-
time RT-PCR of SARS-Cov2

From each well, 50μl of supernatant was collected for 
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subsequent viral quantification by genomic amplification 
(PCR, Figure 2). Viral replication in each of the cell culture 
dilutions was determined by averaging the viral load of 
all wells, by qPCR technique routinely used in the HUCA 
Virology Laboratory for virus diagnosis [25]. Briefly, once 
the viral genome was extracted with the Magnapure LC96 
system (Roche Diagnostic, S.L., Switzerland), 5 μl was 

mixed with 10 μl of a reaction containing specific primers 
and MGB probes against the polymerase fragment and the 
N gene and with Fast-stepone 4x reagent (ThermoFisher, 
S.A. USA). 

The results obtained were expressed as a function of 
the Ct (PCR cycles) observed (the higher the Ct the lower 

A

B

Figure 2 Amplification of SARS-Cov2 in wells without Ribosate (red), with pre-treatment (violet) and without pre-treatment (green) in 
logarithmic (a) and linear (b) scale
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the viral load). A Ct of 40 is assumed to mean no viral 
growth.

(b) Inhibition assay

In the trials carried out with different strains, two types 
of Potassium Ribosate administrations were performed: 
24 hours prior to virus inoculation, which is referred pre-
treatment; or immediately after pathogen inoculation, 
which is referred treatment.

At all times, the concentration at which Potassium 
Ribosate was administered was 125mM (Stock 
concentration as stated by Biochemical Research A.E.I.E., 
derived in vitro assays) [14-22,23e].

To infect the cells, the medium was removed and 200 μl 
of each of the serial dilutions were added and incubated at 
37°C for 1 hour in a 5% CO2 atmosphere. Subsequently, the 
inoculum was removed, and fresh maintenance medium 
was administered without and with RK. Three days after 
infection, the medium was renewed, and each culture was 
maintained under the same conditions as the original ones. 
In all cases, viral replication was measured at 7 days post-
inoculation. These were performed by visualization of the 
cytopathic effect and by PCR quantification (molecular 
readout).

In the latter assay, analysis by Neutral Red staining 
was added in some cases. In order to assess the results 
obtained and quantify the degree of impact of Potassium 
Ribosate on viral replication of the different strains used 
in the assays, the following scale of criteria was developed:

(b.1) Biological readout response (DBS/Neutral 
Red): 

- DBS: difference of more than 2 log between the titre 
with and without reagent.

- Neutral Red: less than 50% growth in the reading title.

(b.2) Molecular readout endpoints (RT-PCR):

- Less than 3 cycles difference: No response (NR)

- Between 3 and 6 cycles (or between 1 and 2 log): 
Response (R)

- Between 6 and 9 cycles (or between 2 and 3 log): Good 
Response (B)

- More than 9 cycles (or more than 3 log): Very Good 
Response (MB)

The final interpretation of the results was carried out 
according to the data obtained with the RT-PCR method as 

it better discriminates the difference in growth. The CPE 
and Neutral Red reading data (when used) were used to 
assess the evolution of the assay and to confirm the more 
accurate data from the RT-PCR method. 

This study was conducted in accordance with the 
Declaration of Helsinki of 1964 and its subsequent 
amendments (as revised in 2013). Due to the study design, 
local Ethical Committee approval was not required. No 
personal data were handled during the study.

EXPERIMENTAL RESULTS

Description and characteristics of each assay

As mentioned above (in the methods section), three 
trials were carried out at different time periods.

In Assay-1, the pure control results and the cells from 
the plate detached from the plate of 6 strains were assessed. 
In Assay-2, 8 strains were assessed and in Assay-3, 15 
strains were assessed. All data from these three trials are 
shown in Table 1.

Of the 29 strains tested, evaluable results were obtained 
in 26. Overall, a response was observed in 13 (50%) pre-
treated and 16 (61.5%) treated strains at inoculation 
(p=0.29). This response was good or very good in 10 
(38.4%) of the pretreated and 11 (42.3%) of the treated 
strains (p=0.4).

DISCUSSION

SARS-CoV-2 generates a wide range of clinical 
manifestations ranging from infection with mild symptoms 
to severe disease. Studies show that the total viral load to 
which the individual is exposed is relevant. Damm et al. 
have found that there is a dose-dependent relationship 
between viral load and disease severity, so it is important 
to assess the change in viral load over time, defined as viral 
kinetics [26a]. The systematic review by Billah et al., shows 
that assessing this parameter could provide insight into 
the possibility of an increase in CoV infections [26b].

The basis for this study lies in the immune response 
and early evasion of the virus. In this respect, many studies 
have been carried out with different products tested with 
varying degrees of success [27].

It should be emphasized that the compound under test, 
Potassium Ribosate, is not an antiviral, so it is necessary to 
interpret its ability, highlighted in some strains, to strongly 
reduce viral replication with a significant reduction of 
viral load. As mentioned in the introductory part, the 
working hypothesis formulated by Biochemical Research 



Sánchez-Vega M.G, et al. (2025)

JSM Biol 7(1): 1022 (2025) 5/7

Central
Bringing Excellence in Open Access





A.E.I.E., together with the Valsé Pantellini Foundation, is 
that the Potassium present in the compound acts on the 
G-quadruplexes (G4) not only of human DNA, for their 
formation and stabilisation [28a], but also and above all 
on the mRNA of the SARS-CoV-2 coronavirus [28b]. Only 
the stabilisation of these structures by a compound or, 
more specifically, an element, such as the cation K+, which 
interacts with G4, can reduce viral RNA replication and 
inhibit protein translation [28c].

 In this work, a reagent has been tested which, on the 
one hand, aims to improve cellular defence against alpha 
variants of SARS-Cov2 and, on the other hand, could act 
on the virus itself (although its mechanism of action is 
not known). Potassium Ribosate was able to alter viral 

replication in more than 60% of the strains. And this 
response was good or very good in 40% of these strains, 
suggesting that it is a good drug to alter viral replication 
and fight infection [29].

These results are in line with other recently tested 
reagents, which, although they do not reach the 80% 
efficiency values of direct antivirals, do present values 
above 60%, similar to those presented in this work [30]. 
To evaluate its activity, three trials were carried out, in all 
of which pretreatment and treatment were evaluated (as 
detailed in Material and Methods), in different periods due 
to the workload involved. And we worked with the alpha 
variant, which was the one available in the laboratory at 
the time. During the evaluation, the SARS-Cov2 typology 

Table 1: Experiment data; strains, titration, genomic amplification cycles (Ct) and VL (log/103 cell) in Pretreatment and Treatment

    Titration Strain Pretreatment with 2021-β Treatment with 2021-β

Experiments Strains CPE Neutral red PCR
 Ct / VL1

CPE / (% 
Growth)2

PCR    
 Ct/VL Valuation CPE (% Growth)2 PCR 

 Ct / VL Valuation

Test 1

1 - - - - - - - - -

2 4 - 22 / 6,7 - 22 / 7,0 NR - 35 / 3,13 VG

3 4 - 21 / 7,0 - 24 / 6,4 R - 31 / 4,32 VG

4 2 - 28 / 5,2 - 37 / 2,5 VG - 22 / 7,0 NR

5 2 - 21 / 6,7 - 22 / 7,0 NR - 21 / 7,3 NR

6 - - - - - - - - -

Test 2

1 2,5 - 25 / 6,1 - 30 / 4,6 R - 30 / 4,6 R

2 2,8 - 25 / 6,1 - 28 / 5,2 R - 30 / 4,6 R

3 2,5 - 27 / 5,5 - 40 / 1,5 VG - 40 / 1,5 VG

4 2,5 - 26/ 5,6 - 37 / 2,5 VG - 37 / 2,5 VG

5 2,1 - 26/ 5,8 - 40 / 1,5 VG - 30 / 4,6 R

6 2,1 - 26 / 5,8 - 40 / 1,5 VG - 35 / 3,1 G

7 2,8 - 27 / 5,5 - 40 / 1,5 VG - 40 / 1,5 VG

8 2,1 - 17 / 8,5 - 28 / 5,2 VG - 40 / 1,5 VG

Test 3

1 3,5 4,55 29,3 / 4,83 + / Not read 25,6 / 5,93 NR + / Not read 25,8 / 5,87 NR

2 3,5 4,00 23,7 / 6,49 + / Not read 25,6 / 5,93 NR + / Not read 26,5 / 5,66 R

3 3,8 4,40 22,0 / 6,94 + / Not read 34,6 / 3,25 VG + / Not read 32,1 / 3,99 VG

4 3,5 3,20 22,6 / 6,82 + / Not read 32,7 / 3,81 VG + / Not read 30,9 / 4,35 G

5 4,8 4,00 25,4 / 5,99 + / Not read 25,7 / 5,9 NR + / Not read 29,8 / 4,68 R

6 3,5 3,10 20,8 / 7,36 + / 100 20,9 / 7,33 NR + / 100 20,6 / 7,42 NR

7 3,1 3,70 32,3 / 3,93 + / 75 30,1 / 4,59 NR + / 50,50 37,9 / 2,27 VG

8 5,8 4,60 20,3 / 7,51 + / 100 18,6 / 8,01 NR + / 100 18,6 / 8,01 NR

9 2,5 3,10 20,5 / 7,45 + / 100 19,3 / 7,80 NR + / 100 29,8 / 4,68 G

10 3,1 3,70 35,0 / 3,13 - 35,6 / 2,95 - - 34,1 / 3,40 -

11 3,5 4,50 24,3 / 6,31 + / 91,40 22,8 / 6,97 NR + / 86,40 22,5 / 6,85 NR

12 3,5 3,20 22,6 / 6,82 ¿? / 100 32,7 / 3,81 VG + / 100 21,7 / 7,09 NR

13 4,8 4,00 25,4 / 5,99 + / 100 25,7 / 5,9 NR + / 100 19,5 / 7,74 NR

14 3,5 4,00 21,7 / 7,09 + / 85,50 21,3 / 7,21 NR + / 89,50 20,7 / 7,39 NR

15 3,8 4,40 20,6 / 7,42 + / 100 19,5 / 7,74 NR + / 79,30 18,5 / 8,04 NR

Ct: genomic amplification cycle, VL: viral load, NR: no response, R: normal response, G: good response, VG: very good response.

1In trials 1, 2, 4 and 5, values separated by | refer to the result of infected cultures without 2021-β for the pre-treatment (left) and treatment (right) trials.2percentage of 
growth calculated with respect to uninfected cells adjacent to the dilution
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was not modified so as not to introduce new variables that 
could alter the final result. The results obtained at the end 
of each trial for both Pretreatment and Treatment revealed 
viral load reductions of 50% and 61.5%; this response 
was Good or Very Good in 10 (38.4%) and 11 (42.3%) 
of the strains, respectively. In all cases that resulted in a 
“Very Good Response” the cytopathic effect was negative, 
showing the weakness of the virus to continue to affect 
these cultures.

CONCLUSION

In summary, administration of Potassium Ribosate 
reduces the viral load and cytopathic effect of SARS-
CoV-2 cultured in Vero E6 cells in more than half of the 
cases and can be considered as a possible therapeutic/
immunomodulatory method aiming to minimize viral 
replication in the early undetectable stages and its 
infectious capacity. Of course, the subject is complex, but 
the working hypothesis formulated may shed new light 
on the inhibition of viral replication using a simple and 
physiological molecule such as Potassium Ribosate and 
may open the door to further studies to better understand 
the mechanisms involved.
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