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Abstract

A cellular function emerges from a collective action of a large number of proteins 
interacting and affecting each other. A major challenge in the recognition of protein 
interaction networks is the cell-to-cell heterogeneity within a sample. This heterogeneity 
hampers the usage of single parametric models that cannot handle population mixtures, 
such as Bayesian networks, artificial neural networks, and differential equations. A 
nonparametric alternative is proposed by [1] in 2011, the nonparametric Bayesian 
network method. An extension of the nonparametric Bayesian network method is here 
presented by using Gaussian dynamic Bayesian networks. This allows the possibility of 
an analysis considering both cell-to-cell variability and temporal correlations between 
interacting proteins. In our results, we show that our new method called nonparametric 
dynamic Bayesian network method significantly improves the nonparametric Bayesian 
network method for the analysis of protein time series and its results are consistent.

ABBREVIATIONS
ANN: Artificial Neural Network; AUROC: Area under the ROC 

Curve; ASW: Average Silhouette Width; BN: Bayesian Network; 
GDBN: Gaussian Dynamic Bayesian Network; MCMC: Markov 
Chain Monte Carlo; ML: Machine Learning; NPBN: Nonparametric 
Bayesian Network; NPDBN: Nonparametric Dynamic Bayesian 
Network; NPBMM: Nonparametric Bayesian Mixture Model; 
PCO: The percentage of correctly allocated observations; ROC: 
Receiver Operating Characteristic Curve

INTRODUCTION
 A cellular function emerges from a collective action of a large 

number of proteins interacting and affecting each other. Many 
of these interactions are randomly produced and, therefore, the 
protein interaction network is still unknown. In some works, 
machine learning (ML) methods [2], among others, differential 
equations [3,4], and Bayesian networks (BNs) [5,6] have been 
applied to address this issue. Among applied ML methods, artificial 
neural networks (ANNs) have been found to be very effective for 
discovering protein interactions (see, e.g., [2]). However, ANNs 
as well as differential equations do not allow capturing in more 
detail the regulatory relationships in the network, as, for example, 
the direction of regulation. Other disadvantages of differential 

equations are the well-known complexity in the computation 
as well as the requirement of a priori knowledge of kinetics 
parameters associated with the interactions between proteins. 
Instead, methods based on BNs, as Gaussian Bayesian networks 
(GBNs), employ a probabilistic mechanism for the identification 
of protein interactions, which requires only the quantification of 
protein levels in a molecular sample. Furthermore, the BN graph 
used to represent the relationships among variables makes it 
fairly understandable to the researcher. 

A major challenge in the reconstruction of protein interaction 
networks is the cell-to-cell heterogeneity within a sample, 
due to, among others, genetic and epigenetic variabilities (see 
[7] and references therein). This heterogeneity hampers the 
usage of a single parametric model like those mentioned in the 
previous paragraph and many lead to invalid interactions due 
to lack of adjustment. To address this issue, some studies such 
as [7,8] have suggested the previous identification of cellular 
subpopulations using mixture models for a later estimate of the 
protein interaction networks. In that respect, [8] uses mixtures 
of ordinary differential equations, while in [7] a nonparametric 
Bayesian mixture of Gaussian BNs, also known, and mentioned 
here, as nonparametric Bayesian networks (NPBNs), was 
employed. Both works, [7] and [8], showed the success of using 
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mixture models in conjunction with the recognition of protein 
interactions for the classification of observations in heterogeneous 
cell populations. A well-known drawback of these methods is that 
both were developed on snapshot data of a dynamic process and, 
respectively, fail to capture temporal information and modeling 
of cyclic networks. Therefore, these methods can be applied only 
on type of single-cell multiparametric measurements currently 
available, such as multicolor flow-cytometry, multiplexed mass 
cytometry, and toponome imaging.

 Advances in the so-called “super-resolution” protein 
quantification methods produce information on the dynamics of 
proteins, which provides at the same time an opportunity for a 
better understanding of protein interactions. In order to include 
temporal dynamics of proteins, we propose an extension of NPBNs 
by using Gaussian dynamic Bayesian networks (GDBNs). A GDBN 
is a generalization of GBNs by using a directed graph to include 
temporal relationships among variables, and allows feedback 
loops, i.e., edges pointing from a variable Xj at a time point t - 1 to 
a variable Xi at a time point t. In studies of biochemical networks, 
feedback loops can be intuitively interpreted as self-regulation or 
self-inhibition. Thereby, GDBNs have been also employed in the 
reconstruction of gene regulatory networks [9,10]. 

However, GDBNs cannot deal with cell-to-cell variability. 
In cases of heterogeneity this could lead to poorly specified 
interaction models. In order to overcome this limitation, we 
propose a nonparametric alternative by using a combination of 
GDBNs and nonparametric Bayesian mixture models (NPBMMs). 
We call here this method “nonparametric dynamic Bayesian 
networks (NPDBNs)”. The dynamic of cellular protein interaction 
networks is here described as a multivariate temporal process 
of first-order Markovian dependence structure in which the 
expression levels of two involved proteins, Xi(t) and Xj(t-1), are 
first-order temporal correlated. We investigate the properties 
of NPDBNs in a thorough simulation study, and compare them 
to NPBNs as well as GDBNs. Our results show that the proposed 
NPDBN method improves significantly over the NPBN and GDBN 
approaches.

MATERIALS AND METHODS 

Simulation Study

Synthetic time-series protein expression data have been 
generated from realistic protein interaction networks by using 
first-order multivariate vector autoregressive models (MVARs) 
such as [11]:

( ) ( ) ( )t t-1 tε= +X XW
               

(1),

where the dynamic process ( ) ( ) ( )( )'

t 1 ,...,=X t n tX X  is the set of time 

series of n proteins for .t Z∈  W is an n-by-n time-invariant matrix 
of weights, where the weights represent the strength of interaction 

between all pair of proteins; and ( ) ( ) ( ) ( )( )t 1 2, ,..., 'ε ε ε ε= t t n t  is 

the matrix of additive Gaussian noises to the protein expression 

at time t with mean vector ( )1 2, ,...,µ = µ µ µn and variances 

( )2 2 2 2
1 2, ,..., .nσ σ σ σ=

 
The evaluation of our method requires 

an intimate control of degradation of the interaction networks, 
which can be reached, so far, only through the use of the MVAR 
models above defined. 

Our simulation study includes different parameters. As a 
first parameter we define the number of cell-subpopulations, 
which means the different underlying classes that we can find 
in a random cell-sample. Since we work with a number of 10 
nodes (proteins) or less, the possibility to identify more than 
two statistically different subpopulations is small, and, we 
here consider mixture observations of two and four separate 
subclasses. The second parameter is the sample proportion, 
which means the number of observations in each existing 
subclass. Variation of this parameter enables to generate realistic 
situations, in which the relative abundance of different cell-
subpopulations is unbalanced. The third parameter, the number 
of nodes (or number of proteins), reflects the complexity of the 
network. In our simulation study we generated networks up to 
10 nodes, because current measurement techniques in biological 
systems can measure up to 10 proteins simultaneously. The 
fourth parameter, the network density, models the proportion 
of possible connections (relationships) in the network that 
are present (see also definition in [12]). The last parameter to 
consider, but not less relevant, is the intra-cell-subpopulation 
variability, representing the underlying variation in protein 
expression levels within each cell-subpopulation. The noise 
level and length of time series are used to define this parameter. 
The noise level represents the fractional deviation from the 
expression level average. The noise level as well as the length of 
the time series can affect the recognition of the temporal relations 
between proteins. 

For the generation of realistic protein interaction networks, 
we set in the simulation study the number of nodes and network 
density based on real protein interaction networks discussed in 
[12]. Under this information, the function “random.graph.game” 
in the R package i graph can give us network structures close to 
these values. More details of the simulation study can be found 
in Table 1, where the rows contain the parameter values varied 
in the simulations. Each combination of parameter values per 
column corresponds to a different dataset. 

Nonparametric Dynamic Bayesian Networks 
(NPDBNs)

This section contains an extension of the NPBN method [1] 
for protein interaction networks. Different from NPBNs, our 
approach employs nonparametric Bayesian mixture models 
in combination with GDBNs instead of GBNs. GDBNs as mixing 
components allow modeling temporal dependencies, which can 
be of interest in the resolution of protein interaction networks. 
A GDBN is defined by the product of Gaussian conditional 
distributions of the form: 

( ) ( )( ) ( ) ( )( )
{ { } ( ) ( )}

2 2
,1 1

1 1

| , , ~ N | , ,

1,..., |

β σ β σ− −

− −

∑

= ∈ ∈

i i Ji i j ii t i t i t j t

i j t i t

p X Pa X X

J j n X Pa
(2), 

where the sets of parents are here denoted as ( )1i tPa − , and 
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correspond to the set of proteins ( ) ( )1 1j t tX − −∈X  that can directly 

regulate a target protein ( ) ( );i t tX ∈X  the set of coefficients, 

{ }, ,i i jβ β= located in the expected value of that distribution 
represent the weights or strength of interaction between 
the involved proteins in the MVAR model defined above. The 
unconditional variances are here denoted as 2σ i  . Assuming a 
heterogeneous cell-population with K cellular subpopulations, 
we define a mixture model of GDBNs to approximate the joint 
distribution of interacting proteins as follows:

( )( ) ( )( )1

2 2| , , , , | , ,λ σ λ σ
=

=∑X B X BK
h h h ht th

p K G p G
          

(3),

where K and λ are the mixture model parameters, here assumed 
as random variables. The prior distribution of K is well defined 
as a geometric or a Poisson distribution, while λ  is assumed to 
follow a Dirichlet distribution. These two parameters are the key 
in modeling the heterogeneity. 

Moreover, a different correlation structure for each mixture 
component is here assumed, and G denotes a set of protein 
interaction networks associated with each “h” component. B 
is a set of regression coefficients associated with the expected 
values of a Gaussian joint probability distribution defined by the 
product of conditional distributions of form shown in Equation 2, 
and 2σ  represents the respective variances. For each component 

h, we have a { }, 1

n
h i h i

β
=

=B and a { }2 2
, 1

n

h i h i
aσ σ

=
=  that define each Gh, 

the directed graph of a GDBN associated with component h. This 

graph describes the correlations of proteins. Thus, relationships 
between proteins are defined by directed edges pointing from one 
edge to another. In a graph, the direction of edges characterizes 
the direction of regulation between proteins. That is, a protein 
that connects to another is said to regulate that protein, whereas 

in the case of disconnection we speak of non-adjoining temporal 
correlations or conditional independence between proteins.

Implementation

In the NPDBN method the classification of observations 
in different components is achieved by using an indicator 
variable, known also as allocation vector. This vector allows the 
assignment of the observations to their respective subclasses. 

For example, in a sample denoted here as { }1,= D ...,DD r  with r 

independent observations of a temporal multivariate process 

( ) ( )1, let = ,...,X rt c c c  be an allocation vector, where cs = h 

implies that the s-th sample, Ds, is coming from the h-th mixture 
component. In Equation 3 the independence of components 
implies that observations in them are also independent, that 
is,  , 1,...,=sc s r  are independent over the K components, with 

( ) λ= =s hp c h  so that ( ) 1
λ

=
=∏

hrK
hh

p c  where hr  is the number 

of samples allocated by c to component h.  Conditioning Equation 
3 on c, it becomes:

( ) ( )
( )

2 2
1

2
, , ,1 1

D | , ,

D | D ,

σ σ

β σ

=

= =

= =∏
∏ ∏

D | B B
s s s

i s s

r
s c c cs

r n
si sPa i c i cs i

p K, ,G, , p G

p

c

                  
(4),

where Ds  is an n-by-ms matrix consisting of ms time-dependent 

realizations of ( ).DX sit and D
isPa  denote the 1−sm  realizations of the 

target variable  ( )Xi t  and of its parent set ( )1−i tPa respectively.  As 
all the observations within the same component belong to the 
same cell-subpopulation, the protein interaction network and 
its associated parameters are also the same. Therefore, we can 
rewrite Equation 4 as follows:

Table 1: List of parameters involved in the simulation study and employed values. Each combination of parameter values per column corresponds 
to a different dataset.

Number of Cell-
subpopulations Sample Proportion Network Density Number of 

Proteins

Noise Level and 
(&) Time Series 

Length

Number of Cell-
subpopulations

2
2 2 2 2

4

Sample Proportion 1:1

1:1

1:1 1:1 1:11:3

1:7

Network Density 0.3 0.3
0.3

0.3 0.3
0.6

Number of Proteins 5 5 5
3

55
10

Noise Level and (&) Time 
Series Length 0.1&100 0.1&100 0.1&100 0.1&100

0.1&20

0.5&20

0.8&20

0.1&100

0.5&100

0.8&100
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( ) ( )
( )

2 2
1

2
, , ,1 1

| , ,

D | D ,

σ σ

β σ

=

= =

= =∏
∏ ∏

D | B D B

i

K
h h h hh

K n
hi hPa i h i hh i

p K,c,G, , p G

p
              (5),

where

{ }{ } { }{ }
{ }{ }

1 1

1

D D ,...,D : ;D D D ,...,D : ;

and D D D ,...,D : ;

= ∈ = = ∈ =

= ∈ =

D

i

h s r s hi si s sr s

hPa sPa s sr s

c h c h

c h

,i hβ  are the coefficients of relations between variables involved 
in the interaction network of component h; and 2

,i hσ  are the 
unconditional variances of variable ( )i tX  in component h. This 
methodology requires the estimation of the number of distinct 
cell-subpopulations, allocation vector and temporal protein 
interaction networks associated with each component. Thus, 
the implementation of our approach requires the analytical 
integration of the parameters ,i hβ , and ,

2
i hσ . This integration is 

well known in Bayesian statistics, since models such as linear 
regression models are obtained in the same way. Thus, following 
the parametrization used in [14] we obtain that:

 

( ) ( )( )
( ) ( )

( ) ( )
( )

( )
( )

( )

( ) ( ) ( )( )* *' 1

1 ,

2 2 2
, , , , , ,

2 2 2
, , , , , ,

*
*

1

*' 1 '

D | D

D | D , , ,

D | D , ,

1
2

2 | |
2

1 D D
2 β

β

β β

β σ β σ β σ

,β σ β σ β σ

π

−

−

−

− +
−

= = =

=

=

− 
Γ + 
 

Γ

 + µ µ + −µ µ  

∫
∏ ∫

∏

i

i

i s s s s s sh

sh

s

hi hPai t i t h

hi hPa i h i h i h i h i h i h

si sPa i c i c i c i c i c i cs

a s

ms

m
a

si si

p X Pa

p p d d

p p d d

m
b a V

a V

b V V
( )1

2
 −
  
     

(6).

Thus, a conditional probability of the target variable ( )i tX  on 
its parent set ( )1−i tPa  can be defined by integration of the main 
parameters, which result in a product of distinct multivariate 

Student´s t distributions. Subindex { }{ }1,.... :h ss s r c h= ∈ =

describes the set of employed observations. The constants a, 

b, vectors βµ , ∗µ , and matrices *,βV V  are hyperparameters 
associated with involved probability distributions into the 
integral (see [7]), which can be estimated through a simulation 
study here modeled. The mean vector *µ  and precision matrix

*V  are given by:

( ) ( )1* 1 1 'D ' D D Dβ β β

−− −µ = + µ +
i i i isPa sPa sPa sPaV V             (7)

and

( ) 1* 1 D ' Dβ

−−= +
isPa sPaV V

i

                          (8)

In order to find an approximation of the parameters K, c and 
G, we maximize their posterior probability distribution given by:

( )( )
( ) ( ) ( ) ( )( )1

, , |

| |=

=

∏ =

∝D

D

i t

K
h h h hi t

p K G X

p K p K p G p X G

c

c
                      

(9),

where

( ) ,p K  the prior distribution for K, is defined as a Poisson 

distribution with parameter equal to 1. ( )| ,p Kc  the prior 

distribution of c, is obtained by integrating ( )| ,λp Kc  with 

respect to the ' sλ  by using a symmetric Dirichlet distribution 

with a K-dimensional parameter vector ( )1,...,δ δK  with 1δ = ∀h h  

as prior distribution. Therefore, ( )|p Kc  is a function depending 

only on K and is given by ( ) 1
! !

! =∏
+

K
h h

K r
r K

 

similar to [1]. The prior 

distribution for ( ), ,h hG p G  is defined as a uniform distribution 

over the cardinalities of parent sets given by:  ( )1

1
, | | .

−

−
i htap  

For sampling the posterior distribution in Equation 8 

we extend the Markov chain Monte Carlo (MCMC) algorithm 
developed by [1]. We employed four of the movements here 
defined for sampling allocation vectors. These moves are here 
called M1, M2, Ejection and Absorption move. The M1 and M2 
moves are two different Metropolis-Hastings structures to re-
allocate some observations from one component h1 to another 
one h2, while the Ejection and Absorption moves are Metropolis-
Hastings schemes that propose to update the allocation vector 
through the increase and decrease of the number of mixture 
components by 1. These four movements are alternated 
randomly in the algorithm by means of probability mechanisms 
(see details in [1]). For each update of the allocation vector, we 
generate a set of temporal interaction networks associated with 
each component by means of the following algorithm:

Algorithm: Generator of Network Structures

1. Input {Allocation Vector (c); Hyperparameter Values 

( ), , , andβ βµa b V ; Iteration Number ( )gT ; Initial Parent Sets 

( )
( ){ }( ) ( )}0

_ _1 1 ;Burn - in− = n
g Burn ini t i

Pa N

2. Output ( ){ ( ) ( ){ }** *
1G ,...,G= KG

3. Set K as the maximum of the components of c.

4. For each iteration 1,..., d :τ = gT og  do:

5. For each h-th component, ( )01,... ,do :=h K  do:

 (Recommendation: Use parallel computing)

6. For each i-th protein, 1,..., ,do :i n=  do:

7. Compute the set of pairwise temporal correlations of 
protein iX .

8. Define a set of candidate parents based on correlations 
different from 0.3 in absolute value.

9. Select a random set of proteins from the candidate parent 
set to define

( )
.τ g

i t-1
Pa

10. Compute the conditional probability associated with the 
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i-th protein, ( )
( ) ( )

( )( )1 ,

* *| .
−

=
i t hi i tCDP p X Pa  Afterwards,

11. compute the ratio ( ) ( )
( )( )

( ) ( )
( )( )

( )
( )

( )
( )

1

1

*
1 ,1 ,

*
1 ,1 ,

|
. ,

|

τ

τ

−

−

−−

−−

=

g

g

i t hi t i t h

i t hi t i t h

Pap X Pa
R

Pap X Pa
 

where ( )1−i tPa  denotes the cardinality of ( )1 .−i tPa

12. Compute the acceptance rate of parent sets, given by: 

( ) ( )( ) { }1*
1 1| ,1 .τ −

− − =g

i t i tA Pa Pa min R

13. Sample ( )
( )

1
τ
−
g

i tPa such that ( )
( )

( )
( )*

1 1
τ
− −=g

i t i tPa Pa
with acceptance rate

( ) ( )( ) ( )
( )

( )
( )11*

1 1 1 1| ; .τ ττ −−

− − − −=g gg

i t i t i t i tA Pa Pa otherwise P a Pa

14. End iteration i and go back to step 6.

15. Define the network ( )τ g

hG  based on the results in step 3.

16. End iteration h and go back to step 5.

17. Postprocess the MCMC sample of network structures 

( ) ( ),..., τ− −g Burn in gNG G  as in [1]. Name this ( )*G .

18. End iteration gτ  and go back to step 4.

19. Stop the algorithm when .τ =
gg T

This algorithm can compute possible edges (relations) 
generated by each protein target through a progression of edges 
given by subsets of parents generated by the same coefficient of 
temporal correlation between each protein pair. This guarantees 
a secure convergence to the real subset of protein parents. The 
program code is available from the authors upon request.

RESULTS AND DISCUSSION
We evaluate the adequacy and stability of our NPDBN method 

based on a simulation study that consists of 100 different cases of 
study. Each dataset contains a total of 400 samples from Equation 
1 distributed in two or four subpopulations according to the 
proportion sample defined in the Table 1. The simulation study 
and the implementation of our method were done in Matlab 
8.1. Figure 1 shows a comparative analysis between NPDBNs 
and NPBNs regarding how well both methods can classify 
observations in heterogeneous cell populations. We employed a 
nonparametric measure, the average silhouette width (ASW), to 
provide a measure of how appropriately observations have been 

Figure 1 (A-B) – Comparative analyses between NPDBNs and NPBNs for the identification of the number of underlying cell-subpopulations. Datasets with a mixture of 
two subpopulations, sample proportion set to 1:1, number of proteins to 5, network density to 0.3, noise level to 0.5, and length of time series to 100. Boxplots show the 
results of the ASW.  The ASW values are incomparable between different clustering approaches, but comparable between different parameters of the same method. The 
largest ASW value indicates the number of distinct subpopulations identified by the respective method. The outliers (dots) obtained from pooled values were left out.
(C-D) –Same legend to (A-B) but for a mixture of four cell-subpopulations.
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Figure 2 (A)-Boxplots of the percentages of correctly allocated observations (pco) using NPDBNs as a function of number of subpopulations. Datasets are from 
simulations with number of cell-subpopulations of two and four, sample proportion of 1:1, number of proteins of 5, network density of 0.3, noise level of 0.5, and length 
of time series of 100. Outliers obtained from pooled values were left out.
(B)-Same legend to (A) but with sample proportion of 1:1, 1:3, 1:7, and mixtures of two cell-subpopulations.

Figure 3 A comparative analysis between NPDBNs and NPBNs for different intra-cell-subpopulation variabilities. Boxplots show the pcos. Datasets are from simulations 
with two cell-subpopulations, sample proportion of 1:1, number of proteins of 5, network density of 0.3. Outliers obtained from pooled values were left out.

clustered (see definition in [15]). The use of this measure requires 
the fixation of the number of clusters in both methods. Therefore, 
an update of the number of components in the corresponding 
algorithm was eliminated, and the cluster number was set from 
2 to 10 clusters. Consequently, we found both methods behave 
similarly in efficiency for the identification of the number of cell-
subpopulations in a cell-sample. 

In Figure 2 and Figure 3 we evaluate the adequacy and 
stability of our NPDBN method as a function of variation of 
parameter levels such as the number of cell subpopulations, 
sample proportion, and intra-cell-subpopulation variability. As 
evaluation measure, we use the percentage of correctly allocated 
observations (pco) (see, e. g., [7]).  In Figure 2, we observe that 
the accuracy in classification of observations decreases as the 
number of cell-subpopulations increases (Figure 2 A). On the 
other hand, a slight change in precision due to a variation in 
sample proportion is observed (Figure 2 B); however, there 
does not seem to be a direct relationship between the influence 
of the sample proportion and the adequacy of the model.  In 

Figure 3, a comparative analysis of NPDBN is carried out with 
the static version NPBNs, in order to know how well our method 
classifies observations in presence of high levels of noise. The 
NPBN method and its associated prior distributions were 
specified and implemented as in [7]. For all methods, the pco is 
directly affected by the noise level and slightly by the length of 
the size of the time series. A gradual increase is observed for the 
variation in its different noise levels. Here, the NPBNs present 
the bigger errors in the classification, which is due to the lack 
of inclusion of temporal correlations. This result demonstrates 
how the inclusion of temporal correlations can bring significant 
improvements in the classification of protein expression levels 
in time series. However, it is important to note that, although 
NPBNs do not allow the consideration of temporal correlations, 
they can classify the samples relatively well. 

Figure 4 and Figure 5 contemplate a comparative evaluation 
of the network structures approximated with NPDBNs in terms 
of temporal conditional dependencies. To address this issue, 
we use ROC curves. A measure of precision is given by the 
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Figure 4 (A)-Boxplots of AUROC in function of network density. Datasets are from simulations with a mixture of two cell-subpopulations, sample proportion of 1:1, 
number of proteins of 5, network density of 0.3 and 0.6, noise level of 0.1, and length of time series of 100. The AUROC is used to compare how good the NPDBNs can 
recognize protein interaction networks. An area of 1 represents a perfect estimation, while an area of .5 represents an estimation based on randomness. Outliers obtained 
from pooled values were left out. (B) – Same legend to (A) but with number of proteins of 3, 5, and 10, and network density of 0.3. (C) – Same legend to (A) but with noise 
levels of 0.1, 0.5, 0.8, and length of time series of 20 and 100.

Figure 5 (A) - Boxplots containing the AUROC corresponding to the comparison of estimated and true protein interaction networks for the first cell-subpopulation in a 
mixture of two cell-subpopulations by using NPDBNs, NPBNs and GDBNs. Datasets are from simulations with mixtures of two subpopulations, sample proportion of 1:1, 
number of proteins of 5, network density of 0.3, noise level of 0.5, and length of time series of 100. Outliers obtained from pooled values were left out.
(B)-Same legend to (A) but for the second cell-subpopulation.

area under the ROC (AUROC) curve. An area of 1 represents a 
perfect estimation, while an area of .5 represents a completely 
random estimation. For the above analyses, we know that some 
parameters, such as the number of nodes, network density, and 
intra-cell-subpopulation variability can affect the accuracy of 
our approach for the recognition of the true temporal protein 
interaction network. Here we found that the number of associated 
edges (Figure 4 A) can result in an increase of the mismatch of 
the model, while the number of nodes (Figure 4 B) is not a direct 
problem. On the other hand, the effect of the term intra-cell-
subpopulation variability is here also evaluated (Figure 4 C). As 
mentioned above, this term degrades the algorithm in terms of 
the amount of error increase. 

In Figure 5, a comparative analysis of the NPDBNs with 
NPBNs and with GDBNs is shown. NPBNs and GDBNs do not 
relate to each other, but nevertheless, present relevance in the 
analysis of protein interaction networks. Significant differences 

are observed when comparing the result of our approach with 
those obtained by the GDBNs without a previous classification of 
observations and the NPBNs without the inclusion of temporal 
correlations. In general, the use of GDBNs without a previous 
stratification of the data lead to mis-specified interaction 
models that do not resemble any of the true networks. The lack 
of adjustment presented in NPBNs is basically due to the non-
incorporation of associated edges to the same node known as a 
feedback loop. In this case, NPBNs tend to seek to compensate for 
this variation in another edge, thus moving away from the true 
structure. This is what leads to a decrease in accuracy.

CONCLUSION
Recent advances in the resolution of protein quantification 

techniques have led to the development of a methodology here 
called “Nonparametric Dynamic Bayesian Networks” for the 
incorporation of information from temporal relationships. Our 
work represents an improvement of the NPBNs [1] that were 
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mainly developed to model static conditional dependencies by 
a directed acyclic graph for heterogeneous cell-populations. An 
optimal implementation of our method occurs by integrating out 
the parameters of the Gaussian conditional distribution given 
by Equation 5. The Nonparametric Bayesian Mixture Model 
here employed, provides a classification of the observations 
in homogeneous subgroups (or cell subpopulations). Each 
mixture component or cell subpopulation is characterized by a 
GDBN, where relationships between proteins are represented 
by a directed graph. These graphs contemplate the connections 
through directed edges, which are computed using Gaussian 
probability models (see Equation 6). The edges that represent 
the connections between the proteins are given by the algorithm 
in units of 0 and 1, where 1 means adjacency and 0 adjacent 
disconnection. A graph is estimated by the summary of the 
different adjacency matrices provided by the MCMC algorithm in 
[1]. A network structure, maximizing the posterior probability in 
Equation 7, is assigned to the computing component. The relations 
are of conditional dependence if non-adjacent proteins are 
conceded by means of a third protein, while the opposite leads to 
a conditional independence. Our analyses using synthetic protein 
interaction data in mixtures of two and four subpopulations, 
served to demonstrate by means of a comparison with the static 
version NPBNs and a single model provided by GDBNs the high 
suitability of our approach for the classification of observations 
and for the reconstruction of dynamic protein interaction 
networks even in the presence of high levels of noise. 
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