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Abstract

Current statistical procedures implemented in statistical software packages for the aggregation of diagnostic test accuracy data include hierarchical 
regression and the bivariate random-effects meta-analysis model. However, these models do not report the overall mean, but rather the mean of a central 
study and have differences in estimating the correlation between sensitivity and specificity when the number of studies in the meta-analysis is small and/or 
when the variance between studies is relatively large.

Generally, to capture the possible dependence between diagnostic test results, a binary covariance structure is assumed, but in this article, we consider 
the use of structures that can be modeled using copula functions as an alternative to dependence modeling with software that is readily available. A posteriori 
statistics of interest are obtained using Markov Chain Monte Carlo. The results obtained using our approach are compared with those obtained using models 
that assume bivariate structure and with those obtained using models under the assumption of independence between test results for clinical diagnosis. To 
illustrate the application of the method and to make comparisons, data from a study published in the literature were used.

ABBREVIATIONS
MCMC: Markov Chain Monte Carlo; AUC: Area Under the 

Curve; HSROC: Hierarchical Summary Receiver Operating 
Characteristic; BRMA: Bivariate Random-effects Meta-analysis; 
Se: Sensitivity; Sp: Specificity; TP: True Positives; FP: False 
Positives; FN: False Negatives; TN: True Negatives; AUDIT-C: 
Alcohol Use Disorder Identification Test - Consumption

INTRODUCTION
The exponential growth of medical literature and the 

increasingly widespread use of information and communication 
technologies, together with the dispersion of scientific 
literature, make it difficult for researchers, and above all health 
professionals, to access relevant information. Meta-analysis is 
a systematic review that incorporates a statistical strategy to 
integrate the results of several studies into a single estimate.

The correct diagnosis of an alteration is of eminent and 
principal interest in psychology and medicine. Diagnostic tests are 
common tools to discern the presence or absence of a condition 
or to examine patients who are at risk of developing a disease. 

Many diagnostic tests are based on scores obtained from brief 
questionnaires or are based on a single biomarker. Therefore, 
they will not always give a correct diagnosis. When primary 
studies are available that evaluate the quality of a diagnostic test, 
performing a diagnostic meta-analysis has become a key tool for 
investigating available information about a diagnostic test [1,2]. 
In a primary diagnostic study, the quality of a diagnostic test is 
often measured in terms of the sensitivity (true positive rate) 
and specificity (true-negative rates = 1 - false-positive rate) of 
the test. In order to be able to operate with likelihood ratios in 
the calculation of probabilities, these must be transformed into 
advantages (odds), these calculations are simplified by using 
nomograms [3]. Sensitivity and specificity vary depending on 
the cut-off point used to separate the presence or absence of the 
condition of interest. In these cases, the results can be represented 
graphically as a ROC curve, which allows the characteristics of the 
test to be known according to different cutting points and which 
can be used to choose the most appropriate one. An estimator of 
the overall relevance of a test can be the Area under the Curve 
(AUC). It must be borne in mind that the information available on 
the validity of diagnostic tests comes from different populations. 
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Therefore, the estimates obtained in these studies are subject 
to random variability and if the studies have been designed 
incorrectly, to biases. The variability of the measurements will 
be influenced by multiple factors that are of interest to know and 
control. Among them, it is especially important to distinguish the 
intra and inter-study variations.

Due to this particularity, the bivariate nature of the data must 
be preserved, modeling sensitivity and specificity together. Two 
models have been established in recent years: a hierarchical 
model [4], a bivariate model [5]. These models, when focusing 
on estimating meta-analytic sensitivities and specificities, has 
the advantages of accessing the individual data and of allowing 
unexplained heterogeneity as well as correlation between 
sensitivity and specificity. Moreover, it can be generalized to 
model covariates and can cope with extreme values of 100% for 
sensitivity and specificity without applying artificial continuity 
corrections, and standard software (e.g., R) can be used for 
analysis. However, there are also some disadvantages of these 
models. It does not operate on the original scale of sensitivity and 
specificity, but on the corresponding logit scale and by generally 
relying on the bivariate normal distribution for the random 
effects, it only allows one single correlation structure. Recently, 
a mixed copula model has been proposed as an extension of 
the generalized linear mixed model-GLMM [6], using a copula 
representation of the distribution of random effects with normal 
marginal and beta, respectively.

We propose here a copulas approach for the meta-analysis 
for diagnostic accuracy studies, which avoids the previously 
mentioned problems, while keeping all advantages of the 
Hierarchical Summary Receiver Operating Characteristic 
(HSROC) and Bivariate Random-Effects Meta-Analysis (BRMA) 
models. It uses the idea of having marginal beta distributions for 
sensitivity and specificity, resulting in corresponding marginal 
beta-binomial distributions for true positives and true negatives, 
and linking the marginal by copula distributions. Copulas are 
a useful way to model multivariate data as they explain the 
dependence structure between sensitivity and specificity by 
providing a flexible representation of a multivariate distribution. 
The theory and application of copulas have become important in 
finance, insurance, and other areas. In this article, with the help of 
the statistical software R [7] (R Development Core Team 2013), 
we compare the performance measures of the Bayesian approach 
against the classic bivariante model [5] using the copulation 
functions.

STATISTICAL METHODS
In general, meta-analysis is a two-stage process. In a first 

step, the results of each study are estimated, although, in the case 
of the evaluation of diagnostic tests, each study is summarized by 
a pair of indices that describe the validity of the test.

Typically, these two indices are either sensitivity and 
specificity, or the positive and negative likelihood ratios. In a 
second step, global validity indices must be calculated for which 
various methods have been proposed, which will be explained 
later. In diagnostic tests, the assumption of methodological 
homogeneity in the studies are not met and it is therefore 
important to evaluate heterogeneity.

Evaluation of heterogeneity

Assessing the possible presence of statistical heterogeneity 
in the results can be done (in a classical way) by presenting 
the sensitivity and specificity of each study in a forest plot. In 
these graphs, the estimators of the indices are represented 
together with their confidence intervals, and they are usually 
presented paired and ordered according to one of the indices. 
A characteristic source of heterogeneity is that which arises 
because the included studies may have used different thresholds 
to dene what a positive result is. This effect is known as the 
threshold effect.

Threshold effect

To explore this source of variation it is useful to represent 
in a graph the pairs of sensitivity and specificity of each study 
in a ROC plane. In this plane, the zone closest to the upper left 
corner assumes good diagnostic performance while the central 
zone, the diagonal in which sensitivity and specificity are equal, 
represents a null diagnostic capability. If there were a threshold 
effect, the points in the ROC space would reflect a curvilinear 
curve. Changing the positivity threshold of a test would result in a 
higher (or lower) sensitivity with the consequent opposite effect 
on specificity.

The most robust statistical methods proposed for meta-
analysis take into account this correlation between sensitivity 
and do so by estimating a summary ROC curve (SROC) of the 
included studies. However, on limited occasions the results of 
the primary studies are homogeneous and the presence of both 
threshold effect and other sources of heterogeneity can be ruled 
out. In this situation, the overall result of the review could be 
obtained from the weighted combination of the indices of the 
individual studies. As always, this combination can be done using 
either a fixed-effect model or a random-effects model, depending 
on the magnitude of heterogeneity. Several statistical methods 
for estimating the SROC curve have been proposed. The first, 
proposed by [8] (Moses, Shapiro & Littenberg 1993), is based 
on estimating a linear regression between two variables created 
from the validity indices of each study.

Bivariate and hierarchical approach

The Moses model has some limitations. On the one hand, it 
does not take into account the different precision with which 
sensitivity and specificity were estimated in each study, nor 
does it incorporate heterogeneity between studies. To overcome 
these limitations, more complex regression models have been 
proposed. The first is a bivariate random-effects model [5] 
(BRMA), which assumes that the logit of sensitivity and specificity 
follow a bivariate normal distribution.

The model contemplates the possible correlation between 
both indices, models the different precision with which sensitivity 
and specificity have been estimated, and incorporates a source of 
additional heterogeneity due to variance between studies. At the 
study level, this model assumed that the true positives and false 
positives within study 1i,i = ,...,I, follow binomial distributions. 
At the between-studies level, a bivariate random effects model 
is assumed for ( )ilogit Se and ( )ilogit Sp , where normal priors are 
assumed for the study-specific parameters:
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The second model refers to the Hierarchical Summary 
Receiver Operating Characteristic (HSROC) or hierarchical 
model [4]. It is similar to the previous model, except that it makes 
explicit the relationship between sensitivity and specificity across 
the threshold. The model included random effects for the cut-off 
and the test accuracy and focused on estimating the SROC curve. 
At the study level, it is assumed that within study 1i,i = ,...,I,the 
True Positives (TP) and the False Positives (FP) follow binomial 
distributions:
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where index 1 denotes diseased individuals and index 2 denotes 
non-diseased. The authors parameterized the sensitivities and 
specificities as follows:
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where kθ  is the random threshold in study i, αi is the random 
accuracy in study i, and β  is a shape (asymmetry) parameter. 
Normal distributions are used to model variation in the study-
specific parameters across studies:
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The BRMA and HSROC are adjusted using the likelihood 
method, assuming that the transformed data are approximately 
normal with constant variance; however, for sensitivity and 
specificity and proportions in general, the values of mean and 
variance depend on the underlying probability.

Both hierarchical models involve statistical distributions at 
two levels. At the lower level, the count of the values taken from 
the tetrachoric tables extracted from each study is modeled using 
the binomial distributions and the log-odds of the proportions. 
At the upper level, it is assumed that the random effects of the 
study explain the heterogeneity in the accuracy of the diagnostic 
test among studies beyond what is explained by the variability of 
sampling at the lower level.

The Bivariate model and the HSROC model are mathematically 
equivalent when covariates are not available [9,10] but differ 
in their parameterizations. Bivariate parameterization models 
sensitivity, specificity, and the correlation between them 
directly, while HSROC model parameterization models positivity, 
precision, and curve shape threshold functions to define an 
SROC curve. Therefore, any factor affecting the probability will 
change the mean and variance. This implies that models in which 
predictors affect the mean but assume a constant variance will 
not be adequate.

A third model is a mixed copula model that is an extension 
of the general linear mixed model of [6], using rather a copula 
representation of the distribution of random effects with normal 
and beta marginal distributions [11]. (Nikoloulopoulos 2015) 
demonstrates that the meta-analysis of precision studies of the 
diagnostic test is a primary field of application for copula models 
since the traditional assumption of multivariate normality is 
invalid in this context. Joint modelling of study-specific sensitivity 
and specificity using existing bivariate or copula-based beta 
distributions overcome the difficulties mentioned above. Since 
both sensitivity and specificity take values in the interval space 
(0,1), it is a more natural option to use a beta distribution to 
describe their distribution across studies, without the need for 
any transformation. The beta distribution is conjugated with 
the binomial distribution and therefore it is easy to analytically 
integrate the random effects giving rise to the marginal beta-
binomial distributions.

There are a variety of statistical packages that can be used 
to perform the analyses described, such as SAS and Stata, which 
through a series of user-programmed macros make it easier 
to obtain the models described. The macros of Stata are called 
Midas, and the macro developed for SAS is called MetaDas [12]. 
Other specific programs for meta-analysis of diagnostic test 
studies are the mada, CopulaREMADA [11] (Nikoloulopoulos 
2015) and HSROC libraries of the R statistical package.

The methods below are demonstrated using a data set 
previously published by [13], which analyzed alcohol problems 
in certain individuals, considering both the 10-item AUDIT and its 
3-item abbreviated version (Alcohol Use Disorder Identification 
Test - Consumption [AUDIT-C]) accurately detect unhealthy 
drinking, to examine whether the AUDIT-C is as accurate as the 
full AUDIT in detecting unhealthy alcohol use in adults. The study 
estimated sensitivity and specificity values around 0.86 and 0.78 
respectively.

Fourteen studies evaluating individuals with 18 332, of 
whom 2 071 had alcohol problems, were included in the review. 
The prevalence of studies ranged from 5% to 37%, with a median 
of 11%, (Table 1).

A statistical method for meta-analysis of diagnostic 
tests from a copula approach

Copula is a well-known statistical concept for modeling 
dependence on random variables. A copula is a joint distribution 
function whose marginal are all uniformly distributed and can 
be used to model the dependence separately from the marginal 
distributions, i.e., it is a function that approximates the set 
behavior of random variables from their individual behaviors 
[14]. Two random variables 1 2x and x  with distribution function 

( ) ( )1 2 ,f x and f x  (Sklar 1959) demonstrated that there is a C 
function can be written as:

( ) ( ) ( )( ) ( )1 2 1 2 1 2, , ,H x x C F x F x C u u= =
             

(6)

where ( )1 2,C u u is itself a distribution function for a bivariate 
pair of uniform random variables and ( )1 2,H x x is a distribution 
function for the original variables 1 2x and x . Therefore, a bivariate 
copula is a function that fulfills the following properties [15] 
(Nelsen 2007): ( ) ( ),0 0, 0, 0, ( ,1) (1, ) .c u C C u u and Cν ν ν= = = =
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The concept of copula allows modeling the dependence 
between marginal distributions

through the copula parameters. That is to say, in the present 
paper we will use only a parametric model, despite the fact that 
there are non-parametric copulas that can be used in order to 
model the dependence between random variables.

These association parameters can be transformed in 
correlation measurements, such as the Spearman or Kendall 
correlation coefficients. [16] (Schweizer, Wol et al. 1981), 
showed that both measurements can be used for the description 
of dependence.

The Hierarchical Copula Model

It is assumed that each individual study ( )1i = ,...,I in the meta-

analysis reports a 2x2 table with values of ,i i iTP TN FP  and false 
negatives iFN  and also with summary measures established by 
the sensitivity iSe and specificity iSp . It is further assumed that 

iTP and iTN are distributed according to a binomial distribution, 
[17], see Equation 7.

~ ( ; )
~ ( ; )

i i i i

i ii i i

TP Binomial TP FN Se
TN Binomial TN FP Sp

+
+

              
(7)

The prior marginal distributions for sensitivity and specificity 
are assumed as beta distributions with parameters; α and β , i.e. 
making an assumption about Se and Sp in their original scale [0; 
1], [17], see Equation 8.
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The corresponding density function for the sensitivity is 
defined by the Equation 9.
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Specificity is defined analogously, where ( )αΓ is the function 
gamma with ( )1 !Γ + =n n for n Z +∈ . The expected ( )E u values 

for the beta distributions are defined as 
*

*

*

α
α β+

 and describe 

the meta-analytical parameters of interest (Se; Sp). In addition, 

the ( )( )
*

*

*
2

* *1

α β

α β α β+ + +
variance estimates explain the variability 

due to the heterogeneity of the studies. The beta distribution is 
used due to its flexibility and the fact that it is conjugated to the 
binomial distribution.

To model the potential dependence between TP and TN, we 
apply the concept of copulas. In our case, a two-dimensional 
Cumulative Distribution Function (cdf) is constructed. Therefore, 
by Sklar’s Theorem.

( ) ( ) ( )( )1 2 1 2, ,se spF x x C F x F x=
            

(10)

The probability density function (pdf) is now determined 
simply by differentiating the joint distribution function. We get:

( ) ( ) ( )( )1 2 12 1 2, ,se sp se sph x x f f c F x F x=
            

(11)

where 12c  denotes the density of a bivariate copula. Density is 
treated as a plausibility function. Note that in the case of copula, 
the likelihood is determined analytically and has a closed form. 
Therefore, the standard methods of maximum likelihood are 
used for parameter estimation. An advantage of the copula 
model is that, in principle, there are a large number of copula 
that allow for different association structures. This is in contrast 
to the standard model where a bivariate normal distribution is 
used as a single correlation structure. There are a rich number 
of copula that can be used, each resulting in a new model for the 
meta-analysis of precision diagnostic studies. To be specific, we 
use the following copulas, the bivariate copula Gaussian, Clayton 
and Frank, these are copulas that can be adjusted to Equation 11 
[11] (Nikoloulopoulos 2015).

Selection of a Model Copula

The aim is to identify among the copula families set out in 
previous section, which family or families best fit the joint 
distribution of iSe  and iSp . This is done using the Cramér-von 
Mises goodness-of-fit test [18] (for details of this test.

Simulation Study

A simulation study was carried out to compare the 
adjustment of the different copulas. The scenario specifications 
were designed to reproduce realistic situations found in the 
meta-analysis of diagnostic accuracy studies.

Generation of simulated data and goodness-of-fit of 
copulas models

Meta-analyses were investigated with different numbers 
of studies at random (k = 5; 10; 20; 35). The size of a study in 
each meta-analysis, nj, were randomly sampled from a uniform 
distribution, U(30; 1 255); given an underlying prevalence, p, 
individuals within each study were randomly classified as sick or 
undiagnosed, and a continuous test result value, x, was assigned 
and randomly sampled [19]. To determine the corresponding 

Table 1: AuditC Data.

ID TP FP TN FN

1 47 101 738 9

2 126 272 1543 51

3 19 12 192 10

4 36 78 276 3

5 130 211 959 19

6 84 68 89 2

7 68 112 423 0

8 752 3226 2977 0

9 59 55 136 5

10 142 571 2788 50

11 137 107 358 24

12 57 103 437 3

13 34 21 56 1

14 152 88 264 51
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tetrachoric tables, the package Copula Remada of the statistical 
program R was used, using the function rCopula REMADA. beta.

To create the 2x2 table for each study, individuals were 
classified as a true positive, false negative, false positive, or 
true negative based on the test result and disease status. The 
sensitivity and specificity of the studies was adjusted by a 
uniform distribution with parameters 0:8 and 1. We generated 21 
011 studies in 10 58 independent meta-analysis datasets to allow 
a reliable analysis of the goodness of fit of previously analyzed 
models. The goodness-of-fit of copulas models was assessed by 
examining the test statistician’s estimates and the p-value of the 
statistical test proposed by [18].

Adjusting The Hierarchical HSROC and Copula Model

We will use the CopulaDta package [20] (Nyaga, Arbyn 
& Aerts 2016) to adjust the copulas analyzed in Section 2.5. 
The package facilitates the application of complex models and 
their visualization within the Bayesian framework with short 
execution times and provides functions of binomial beta bivariate 
distributions built as a product of two beta marginal distributions 
and copula densities discussed in the previous Section.

The HSROC package is used to estimate the parameters of a 
hierarchical summary receiver operating characteristic (HSROC) 
model allowing for the reference standard to be possibly 
imperfect, and assuming it is conditionally independent from 
the test under evaluation. The estimation is carried out using a 
Gibbs sampler. The package consists of 4 functions. The two main 
functions are HSROC and HSROCSummary. HSROC, which must 
be run first, is used to implement a Gibbs sampler while HSROC 
Summary produces summaries for the HSROC model parameters. 
The remaining 2 functions are secondary functions: sim data 
simulates a dataset based on the HSROC diagnostic meta-analysis 

model, while beta. parameter returns the shape parameters of 
the ( ; )Beta α β probability corresponding to a given range.

Results of the adjustment to AuditC data and 
simulated data

It is important to analyze the behavior and distribution of 
the data, before fitting any model, for our analysis, we will use 
statistical tests based on measures such as: chi-square, Cook 
distance and Mahalanobis, [21,22] Comrey 1985, Cook 1977, 
Rasmussen 1988). In that sense, Figure 1, shows that, there are 
influential studies in the BRMA modeling and that the goodness 
of the adjustment and bivariate normality is not adequate, 
particularly due to studies 3 and 8 from Table 1 (Figure 1).

On the other hand, Figure 2 shows how the different values of 
sensitivity and specificity are located below or above the dotted 
line (average), indicating a strong presence of heterogeneity in 
both measures. That is, the graph demonstrates an asymmetry 
of the test performance means towards higher sensitivity 
with lower specificity, providing indirect evidence of certain 
heterogeneity threshold variability (Figure 2).

As mentioned above, the HSROC and BRMA models are 
equivalent when there is no inclusion of covariates, so we will 
analyze the outputs produced by the HSROC package of R. The 
HSROC Summary function creates plots to help evaluate whether 
the Gibbs sampler has converged. Each trace plot is a scatter plot 
of the posterior sample of a single parameter vs the iteration 
number of the Gibbs sampler. The trace plots for the sensitivity 
and specificity are shown in Appendix 1. For our example, we can 
see that convergence seems to be achieved fairly quickly. Another 
graphical summary produced by the HSROC Summary function is 
the density plot.

It plots a smoothed posterior kernel density function for 
each parameter. Appendix 2 shows density plots for some of 

Figure 1 Goodness-of-t, bivariate normality, influential and atypical data.

https://www.jscimedcentral.com/Biometrics/biometrics-5-1036a.docx
https://www.jscimedcentral.com/Biometrics/biometrics-5-1036a.docx
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Figure 2 Foresplot.

the between-study parameters. The function also produces a 
summary receiver operating characteristic (SROC) curve.

The SROC curve summarizes the relationship between 
sensitivity and (1 - specificity) across studies, taking into account 
the between-study heterogeneity. The SROC curve for the Audit 
C data is shown in Figure 3, where, it can be noted that the values 
for sensitivity and specificity are: 0.430 CI95% (0-0.913) and 
0.982 CI95% (0.734-1) respectively (Figure 3).

Individual studies are depicted by a clear circle. The radius 
of the circle is proportional to the sample size of the study. The 
black circle marks the pooled sensitivity and specificity across 
the 14 studies in this meta-analysis. The 95% prediction region 
is defined by the black dotted-curve. The black dot-dashed-curve 
marks the boundary of the 95% credible region for the pooled 
estimates of sensitivity and specificity across the 14 studies. 
Finally, the correlation between sensitivity and (1-specificity) 
is 0.854. Table 2 shows that Frank’s copula is the most extreme, 
with a correlation of -0.600, although the Gauss and C90 models 
also have a high correlation whose values are -0.570 and 
-0.466 respectively. It is important to note that the sensitivity 
and specificity results for the Auditc data in the copula models 
(sensitivity between 0.85-0.87 and specificity between 0.75-
0.76) are very close to the values provided by [13]. That is, the 
estimates made by copulas are more reliable than the estimates 
made by the HSROC model (very low sensitivity 0.430 and very 
high specificity 0.98) (Table 2) (Figure 4).

Since the data is not distributed as a bivariate normal, and 
the value of the correlation between performance measures 
is positive, modelling of dependency through copulas should 
be used. In that sense, you have the results for the values 

of sensitivity, specificity and correlation , ,x yτ
 

table 2. The 
algorithms used can be seen in Appendix 3.

For each copula described above, the respective goodness-
of-fit tests are performed. The results are shown in Table 3. 
To link marginal beta distributions with a bivariate dependent 
distribution, the best fit is observed when working with FGM 
copula. This is seen in the value of the statistic and p-value which 
leads to the acceptance of the hypothesis of equality of empirical 
and parametric distributions. For FGM copulation, the value of 
the statistic and the p-value are 0.022 and 0.903. Note that, the 
p-value for FGM copula is the highest value in relation to the 
other copulas Table 3.

Table 4 shows the average estimates with their respective 
95% confidence intervals of the statistician and the p-value of the 
hypothesis test for each copula model according to the number 
of studies simulated for each meta-analysis. FGM copula best fits 
the simulated data for numbers of studies between 5 and 22, as 
the average value of the statistic is the lowest compared to the 
other copula models. Between 23 and 28 studies the best fit was 
achieved with Gaussian Copula and for studies between 29 and 
35 the best fit was achieved with Clayton Copula (Table 4).

CONCLUSION AND REMARKS
[In this paper, definition, implications and methodologies 

were presented for the development of models in the meta-
analysis of diagnostic tests associated with copulas, applied to a 
particular data set, although [23,24] pointed out that it might be 
difficult to estimate copulas from a data set, especially for count 
data. This problem may not occur under the conditions indicated 
in the article, because the parameter ( )0;1p∈ is modeled from a 
continuous distribution. In general terms, copulas are functions 

https://www.jscimedcentral.com/Biometrics/biometrics-5-1036a.docx
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Figure 3 Foresplot.

Table 2: A posteriori mean, with 95% credibility interval, for the marginal means and the estimated correlation parameters for the different copulas 
for the AuditC data.
Copulas Parameter Mean Lower Upper

Gauss

Se 0.862 0.766 0.920

Sp 0.755 0.6898 0.811

correlation -0.570 -0.799 -0.289

C90

Se 0.865 0.777 0.922

Sp 0.760 0.695 0.813

correlation -0.466 -0.801 -0.0005

C270

Se 0.854 0.743 0.920

Sp 0.752 0.680 0.810

correlation -0.324 -0.758 -2.219e-17

FGM

Se 0.871 0.780 0.932

Sp 0.756 0.692 0.812

correlation -0.214 -0.222 -0.121

Frank

Se 0.858 0.754 0.929

Sp 0.751 0.773 0.808

correlation -0.600 -0.767 1.000

Abbreviations: C90: Clayton 90; C270: Clayton 270; FGM: Farlie-Gumbel Morgenstern; Se: Sensitivity; Sp: Specicity

that approximate the set behavior of random variables, based on 
their individual (marginal) behaviors [14].

Sensitivity and specificity measurement models that make 
more realistic assumptions about marginal distribution functions 
(e.g., those that deviate from the assumption of normality), 
although they may be more expensive in computational terms, 
are best measured by summaries of a meta-analysis of diagnostic 
tests. In this sense, models derived from copula offer a structure 

analytical flexible that is appropriate for the measurement of 
sensitivity and specificity.

In the meta-analysis of diagnostic tests there is great 
heterogeneity [25,26], due to prevalence, the number of studies, 
individuals analyzed, laboratory procedures, etc. For this reason, 
bivariate copulas can be expanded and modeled in conjunction 
with sensitivity and specificity using multivariate copulas.
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Table 3: Goodness-of-t tests for Copula Model.

Copula Model Statistic p-value

Gauss 0.06547 0.301

Clayton 0.05539 0.659

FGM 0.02287 0.903

Frank 0.06647 0.296

Abbreviations: FGM: Farlie-Gumbel-Morgenstern

Figure 4 SROC for AuditC data.

The HSROC model does not operate on the original scale of 
sensitivity and specificity, but on the corresponding logit scale 
and by generally relying on the bivariate normal distribution 
for the random effects, it only allows one single correlation 
structure. So we propose the use of copulas for the meta-analysis 
for diagnostic accuracy studies, which avoids the previously 
mentioned problems.

The use of copulas allows the study of dependencies with 
structures that are not necessarily linear which is possible 
in diagnostic situations whose results are obtained after 
dichotomization. Copula models that use beta-binomial 
distributions to characterize the marginal of true positives and 
negatives are linked to bivariate or multivariate copulas, i.e., it 
is a bivariate logistic regression model with random effects, 
presenting greater flexibility to capture the functional dependence 
between sensitivity and specificity. In other words, hierarchical 
models assume a normal bivariate behavior between the logit 
transformations of sensitivity and specificity. When the bivariate 
normality assumption is not met, copula modeling is used, which 
uses beta-binomial distributions to characterize the marginal 
distributions of the true positive and negative, i.e. it presents a 
greater flexibility to capture the functional dependence between 
sensitivity and specificity.

We illustrate the procedure using a dataset published in the 
literature. The adjustment of the data was obtained by assuming 

binary associated tests and taking covariance as a parameter. It 
is important to note that the five copulas naturally and correctly 
capture the dependence structure between sensitivity and 
specificity (inverse relationship). The FGM copula showed a 
better fit compared to Gauss, C90, C270 and Frank copulas, as it 
obtained the highest sensitivity value. On the other hand, Frank’s 
copula estimated the highest correlation between sensitivity 
and specificity and the estimated values for the pair of summary 
measures (sensitivity and specificity) are very close to the values 
obtained by [13]. This is not the case with the HSROC method, 
reflecting the effect that hierarchical modeling has in capturing 
the relationship between sensitivity and specificity.

Likewise, from the results of the 2x2 table, it can be seen that 
the best modeling for the study data corresponds to the FGM 
copula according to the Cramér-von Mises goodness-of-fit test. 
In the same sense, copula modeling estimated higher sensitivity 
values than the HSROC model, that is, for the present context, 
parameter estimates by couples were better than the hierarchical 
model.

An attractive feature of copulas is that through beta-binomial 
distributions the measurements of TP and TN are modelled, 
which is due to the fact that the beta distribution is conjugated 
with the binomial distribution. An explicit advantage of the 
beta-binomial distribution is that study sizes are automatically 
accounted for and the relationship between sensitivity pair and 
specificity is captured naturally. These characteristics do not 
happen with the BRMA model, other words, modeling by copulas 
is a true random effects model, which means that all tests within 
studies have a single specific parameter (Se; Sp).

For the selection of a dependent bivariate copulation model, 
the use of hypothesis tests fits highlighted easy to understand. 
This allows analysts too quickly and identifies a copula model for 
the construction of a bivariate dependent distribution that fits a 
data set well.

We have simulated meta-analysis in several scenarios 
(different numbers of studies, etc) and evaluated the hierarchical 
model of copulations. The methodology presented allows us 
to identify the best fit for the copulas analyzed in this work. It 
suggests that for several studies between 5 and 22, the FGM 
copula performs the best fit.

To finally conclude, the proposed model with marginal 
beta-binomial distributions and bivariate copulas seems to be 
a promising tool for the meta-analysis of diagnostic accuracy 
studies. What are probably needed in the future are feasible 
model selection tools that help to assess fits of different models 
to data sets. These tools should be able to discriminate between 
the hierarchical models and the copula models but also between 
different copula models. Until then, it might be a good idea to 
compute the copula models along with the hierarchical models to 
check the robustness of the latter.
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Table 4: Goodness-of-t tests for simulated data.

Number of studies in the Meta-analysis

Copulas Parameter [5-10] [11-16] [17-22] [23-38] 29-35]

Gauss
Statistic 0.118 (0.113-0.123) 0.069(0.066-0.071) 0.050(0.049-0.052) 0.043(0.041-0.044) 0.037(0.036-0.038)

p-value 0.503(0.464-0.541) 0.490(0.451-0.528) 0.470(0.434-0.506) 0.449(0.405-0.494) 0.490(0.452-0.528)

Clayton
Statistic 0.168(0.104-0.232) 0.169(0.050-0.286) 0.137(0.012-0.262) 0.110(-0.028-0.249) 0.034(0.033-0.035)

p-value 0.526(0.484-0.569) 0.521(0.480-0.562) 0.527(0.490-0.564) 0.483(0.44-0.526) 0.498(0.461-0.536)

FGM
Statistic 0.064(0.059-0.070) 0.050(0.047-0.053) 0.048(0.045-0.051) 0.061(0.055-0.068) 0.067(0.058-0.075)

p-value 0.717(0.676-0.758) 0.628(0.586-0.669) 0.487(0.443-0.530) 0.345(0.299-0.391) 0.303(0.262-0.343)

Frank
Statistic 0.111(0.104-0.118) 0.068(0.066-0.071) 0.051(0.049-0.052) 0.043(0.042-0.045) 0.037(0.036-0.038)

p-value 0.431(0.371-0.491) 0.489(0.441-0.537) 0.465(0.421-0.508) 0.434(0.385-0.482) 0.466(0.425-0.508)

Abbreviations: C90: Clayton 90; C270: Clayton 270; FGM: Farlie-Gumbel Morgenstern; Se: Sensitivity; Sp:  Specificity
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