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Abstract

In this paper, we introduce a novel approach for analyzing gene expression data by integrating the t-distributed Stochastic Neighbor Embedding (t-SNE) 
for data clustering with a generalized F-test for multiple mean comparison. High-dimensional gene expression data often poses challenges when the number 
of features exceeds the total sample size from individual clusters, limiting the applicability of traditional multivariate methods such as Multivariate Analysis 
of Variance (MANOVA). By employing t-SNE, we first perform nonlinear dimensionality reduction to cluster gene expression data, providing clear visual 
separation of different groups. Following this, a generalized F-test is applied to compare the mean expression levels across these clusters. The method is 
further enhanced through projections onto lower dimensions using Principal Component Analysis (PCA), ensuring robustness across different projection spaces. 
Our approach provides an efficient solution to the problem of multiple mean comparison in high-dimensional settings, where traditional methods fall short. We 
demonstrate the effectiveness of the proposed method through a case study involving real gene expression data, highlighting its practical utility for researchers 
in genomics and bioinformatics. Future work will explore post-hoc analyses after rejecting the null hypothesis of equal mean expression levels.

ABBREVIATIONS

IID: Independent Identically Distributed; MANOVA: 
Multivariate Analysis of Variance; PCA: Principal Component 
Analysis; t-SNE: t-Stochastic Neighbor Embedding

INTRODUCTION 

The analysis of gene expression data has become increasingly 
complex with the advent of high-throughput technologies, which 
generate large-scale, high-dimensional data. One of the challenges 
associated with this type of data is the need to accurately classify 
and compare gene expressions across different experimental 
conditions or samples. Traditional multivariate statistical 
methods, such as Multivariate Analysis Of Variance (MANOVA), 
are often limited by the curse of dimensionality [1], particularly 
when the number of dimensions exceeds the number of 
observations. In such cases, standard methods may fail to deliver 
meaningful insights due to the overfitting of models, leading to 
unstable or unreliable results. To address these challenges, novel 
approaches that combine nonlinear dimensionality reduction 
with robust statistical tests are becoming essential [2,3]. This 
paper introduces a method that integrates the t-distributed 
Stochastic Neighbor Embedding (t-SNE, [4]) technique with the 
generalized F-test [5] for the analysis of gene expression data. The 
primary aim is to utilize the strength of t-SNE for classifying high 

dimensional gene expression data into meaningful clusters and 
subsequently applying the generalized F-test to compare means 
across these clusters. The method capitalizes on the nonlinear 
dimensionality reduction capability of t-SNE to visualize complex 
gene expression data structures, followed by the application of a 
statistical test suitable for situations where traditional methods 
such as MANOVA are not applicable due to the data’s high 
dimensionality relative to sample sizes. 

The t-SNE algorithm is particularly advantageous in high-
dimensional data contexts as it effectively preserves the local 
structure of the data while allowing for a global arrangement 
that reflects meaningful clusters. This method is especially 
useful for visualizing gene expression data, where intricate 
relationships between genes can be difficult to interpret using 
standard dimensionality reduction techniques. By mapping 
highdimensional gene expression profiles into a lower-
dimensional space, t-SNE helps reveal natural groupings of 
gene expressions, which can be crucial for identifying distinct 
biological processes or experimental conditions. 

After visualizing and identifying clusters with t-SNE, the 
generalized F-test is employed to perform multiple mean 
comparisons across the clusters. The generalized F-test has been 
recognized as a robust alternative to traditional methods when 
dealing with highdimensional data, particularly in cases where 
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the dimensionality exceeds the total number of samples. Unlike 
classical MANOVA, which is limited by the requirement that 
the total sample size must exceed the number of variables, the 
generalized F-test accommodates the high-dimensional setting, 
allowing for the comparison of multiple group means even when 
the data’s dimensionality is greater than the total sample sizes 
from individual clusters. This approach offers several benefits 
for the analysis of gene expression data. First, the use of t-SNE 
allows for the visualization of complex gene expression patterns, 
providing a clear and interpretable view of the data’s structure. 
This is particularly valuable for understanding the underlying 
biological processes and for identifying distinct groups of 
gene expressions that may correspond to different functional 
pathways or disease states [6,7]. Second, the generalized F-test 
enables robust statistical inference in high-dimensional settings, 
avoiding the limitations of traditional multivariate analysis 
techniques. By combining these two methods, researchers can 
gain both an intuitive visual understanding of their data and a 
rigorous statistical framework for comparing group means. 

In summary, this paper presents a novel approach that 
combines the t-SNE plot’s clustering and visualization capabilities 
with the generalized F-test’s statistical rigor for analyzing 
high-dimensional gene expression data. The proposed method 
allows for effective classification of gene expressions and robust 
comparison of means across clusters, making it particularly 
suitable for applications in genomics where traditional methods 
may falter due to the high dimensionality of the data. Section 
2 presents the basic idea of the t-SNE plot and its illustration 
through real datasets. Section 3 gives simple introduction to 
the generalized F-test and its implementation on real datasets. 
Related methods such as MANOVA and other approaches to 
multivariate multiple mean comparison are also discussed in 
Section 3. Some concluding remarks are summarized in the last 
section. 

THE T-SNE PLOT AND ITS ILLUSTRATION 

Steps for implementing a t-SNE plot can be summarized as 
follows. 

•	 Data preprocessing: start by preparing high-dimensional 
data (e.g., gene expression data). This often involves 
normalizing or scaling the data so that features have 
similar scales. Ensure the data is in matrix form, with 
samples as rows and features (such as gene expression 
levels) as columns. 

•	 Compute pairwise distances: t-SNE works by comparing 
the pairwise similarities between data points. For each 
data point in the high-dimensional space, compute the 
distances to every other point. This is typically done using 
Euclidean distance. 

•	 Convert distances to probabilities: for each data point, 
convert the pairwise distances to probability distributions 
that represent how likely two points are neighbors in 
high-dimensional space. This is done using a Gaussian 

probability distribution, where closer points have higher 
probabilities of being neighbors. 

•	 Project data into low-dimensional space: t-SNE maps the 
high-dimensional data into a lower-dimensional space 
(usually 2D for simple visualization purpose) by finding 
a similar probability distribution of points in the new 
space. t-SNE minimizes the difference (or divergence) 
between the two distributions (highdimensional and low-
dimensional) using a cost function called Kullback-Leibler 
(KL) divergence [8,9]. 

•	 Optimize the mapping: t-SNE uses an optimization 
method, typically gradient descent, to iteratively adjust 
the points in the lower-dimensional space. The goal is to 
find a configuration in the lower-dimensional space that 
best reflects the distances and relationships from the 
high-dimensional space. 

•	 Visualize the results: once the optimization process 
is complete, the data points are mapped to a lower-
dimensional space. These can be visualized in a scatter 
plot. The clusters or groupings formed can reveal 
meaningful patterns or relationships in the data. 

•	 Parameter tuning: t-SNE has parameters such as 
“perplexity” (which balances local and global data 
structure) and “learning rate” that can be adjusted to 
improve the results. These parameters are typically set 
through trial and error or based on the data characteristics. 

There are three key parameters in implementing the t-SNE 
plot: perplexity, it controls how to balance local and global aspects 
of the data; learning rate: it affects the speed and effectiveness of 
the optimization process; and number of iterations: the number of 
optimization steps, increasing this can improve the quality of the 
mapping. This implementation is typically done using libraries 
like Python’s `scikit-learn` or `TensorFlow`, which have built-in 
functions to perform t-SNE. Because the t-SNE plot depends on 
a careful choice of its parameters such as the perplexity, which 
typically ranges between 5 and 50. Smaller values of perplexity 
emphasize local data structure, while larger values focus more 
on global data structure. A practical implementation of the 
t-SNE plot can be done by running the Rtsne package that is 
free to download and running install. packages(“Rtsne”) under 
the R command line after installing the general R software from 
https://cran.r-project.org/, and then running library(Rtsne) 
under the R command window. We illustrate its application in 
the following example. 

Example: The gene expression dataset consists of gene 
mapping data of different time points using mass spectrometry 
technology. The original data were collected from a study of 
Metabolic Syndrome (MetS), which is a collection of metabolic risk 
factors, including central adiposity, hyperglycemia, hypertension 
and dyslipidemia. Yu ZR, et al. [10] studied the identification of 
potential biomarkers of metabolic syndrome by taking urine 
samples from 36 male patients who were policemen in the 
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The t-SNE plots for both negative-mode and positive-mode 
data with different number of clusters under different perplexity 
parameters are shown in the following Figures 2-7. 

Summary observation from Figures 1-7: for both negative-
mode and positive-mode data, a better classification of the data 
seems to be four clusters because: 1) classification of three to 
four clusters leads to a big decrease in the elbow plot as shown 
in Figure 1; 2) classification of four to five clusters only leads 
to a small decrease in the elbow plot as shown in Figure 1; and 
3) the classification of five clusters shows more overlapped 
observations than those for the classification of four clusters. 
Therefore, it is better option to classify both negative-mode and 
positive-mode data into four clusters, respectively. 

City of Tianjin. The original data were obtained through both 
positive mode and negative mode method by mass spectrometry 
technology. The experimental data from 36 patients were 
matched paired with 36 normal patients as the control group. 
Both the negative-mode and positive-mode data consist of a 
total of 36 patients in the experimental group and 36 patients 
in the control group. The urine sample was carried out for 869 
time points for negative-mode data and for 552 time points for 
positive-mode data using mass spectrometry technology. We tale 
each observation as the gene expression data for 36 patients in 
the trial group. So the data the dimension p=36, the sample size 
n=869 for the negative-mode data and n=552 for the positive-
mode data. Both of the set of negative-mode data and the set of 
positive-mode data consist of a total of 36 patients in the trial 
(experimental) group and 36 patients in the control group. The 
original data are available upon request. 

When determining the possible number of clusters for a gene 
expression dataset, the elbow plot [11] can be implemented, 
which is a method of plotting the WCSS=withincluster sum 
of squares against the number of clusters. The elbow method 
is based on the k-means algorithm which is provided by the R 
package “kmeans”. The elbow plot for the negative-mode dataset 
is given in Figure 1. 

From the elbow plots, it seems that the better number of 
clusters for both negative-mode and positive-mode data may be 
3, 4, and 5. We summarize the number of observations (the gene 
expression levels) for each case in Tables 1,2. 

Table 1: Classification of negative-mode data into different number of clusters for 
the trial group.

No. of observations  
No. of 

clusters  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Total 

3 3 38 828   869 
4 732 21 113 3  869 
5 145 14 3 37 670 869 

Table 2: Classification of positive-mode data into different number of clusters for 
the trial group.

No. of observations  
No. of 

clusters  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Total 

3 30 517 5   552 
4 482 10 56 4  552 
5 92 411 10 35 4 552 
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Figure 1 Elbow plots for negative-mode and positive-mode data for the trial and control groups.
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Figure 2 t-SNE plot for negative-mode data from 36 patients in the trial group (clusters=3).
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Figure 3 t-SNE plot for negative-mode data from 36 patients in the trial group (clusters=4).
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Figure 4  t-SNE plot for negative-mode data from 36 patients in the trial group (clusters=5).
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Figure 5 t-SNE plot for positive-mode data from 36 patients in the trial group.
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Figure 6 t-SNE plot for positive-mode data from 36 patients in the trial group (clusters=4).
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Figure 7  t-SNE plot for positive-mode data from 36 patients in the trial group (clusters=5).



Liang J, et al. (2024)

7/8Ann Biom Biostat 7(1): 1041 (2024)

Central

The generalized F-test for multiple mean comparison 

In this section, we will employ the generalized F-test [5] for 
multiple mean comparison among the four clusters of negative-
mode and positive-mode data in the last section. For an i.i.d. 
(independent identically distributed) sample from each cluster, 
we follow the notation in [5]. Let 

 𝜇! = the mean level of observations in cluster 𝑖, 𝑖 = 1, … , 𝑘, 𝑘 ≥ 2

 We want to test if the mean levels for all k clusters are the 
same. That is, we want to test the statistical hypothesis 

		  (1)

against the general alternative hypothesis that at least two 
means differ. Note that each mean level is a vector of p-dimension 
with p=the number of patients in each mode (negative or 
positive)=36. The sample size n=the gene expression levels 
(n=869 for negative-mode data, and n=552 for positive-mode 
data). Denote the observations from each cluster by

It is known that hypothesis (1) is the problem of Multivariate 
Analysis of Variance (MANOVA). It can be tested by the classical 
Wilks-Lambda statistic [1] if the total sample size is greater than 
the data dimension . Here we employ the 
generalized F-test [5] to test hypothesis (1) and the two-by-two 
paired comparison between any two clusters. The generalized 
F-test is applicable for both cases of 𝑛 > 𝑝 and 𝑛  ≤ 𝑝. According to 
[5], the generalized F-test is computed as follows. Let 

  

(3)

Define the eigenvalue-eigenvector problem 

 		  (4)

Where 𝐷 = (d1, ..., dp): 𝑝 × 𝑝 consists of the eigenvectors, and 
Λ = 𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆p)) is a diagonal matrix consists of the eigenvalues 
𝜆1 ≥ ⋯ ≥ 𝜆p ≥ 0. Let 

 

 The generalized F-statistic is defined by 

Liang and Tang [5] gave the probability distribution of GF by 

under the null hypothesis (1) and the multivariate normal 
assumption with equal covariance matrices for the data from all 
clusters, and the sample size is large enough. Here F(𝑥; 1, 𝑛 − 2) 
stands for the distribution function of the F-distribution 𝐹(1, 𝑛 − 
2) and 𝑞 = min(𝑛 − 1, 𝑝) −   1=the number of positive eigenvalues 
in (4). The p-value of the generalized F-test (6) for hypothesis (1) 
is computed by 

 

Where 𝐺𝐹0 is computed from the sample data through 
equations (2)-(6). A small p-value implies rejection of hypothesis 
(1). 

 The number q in constructing the generalized F-statistic (6) 
acts as the projection dimension in the PCA (principal component 
analysis) problem (4). In general q should be chosen as the 
number of positive eigenvalues to ensure there exists variation in 
the data projected to the PCA direction. Based on the PCA theory 
[12], the idea of explanation of variation of the eigenvalues can 
be employed to determine q, for example, q can be chosen as 
the number such that the first q eigenvalues can explain a given 
percentage 0 < 𝑒 < 1: 

 We apply the GF-test (6) to the multiple mean comparisons 
for the clusters in tables 1,2 and summarize the p-values for all 
comparisons in tables 3,4, where 

That is, 𝑞1 is the smallest projection dimension such that the 
first 𝑞1 PCA directions can explain a least 90% data variation; 
𝑞,  is the smallest projection dimension such that the first  
𝑞,  PCA directions can explain a  least 80% data variation; 𝑞 / 
is the smallest projection dimension such that the first 𝑞/ PCA 
directions can explain a least 70% data variation; and 𝑞0  is 
the smallest projection dimension such that the first 𝑞0  PCA 
directions can explain a least 60% data variation (Tables 3,4). 

The p-values in tables 3,4 imply that it is practicable to classify 
the negative-mode data for the trial group into either 3, 4, or 5 
clusters depending on practical needs, while it is impractical to 
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classify the positive-mode data for the trial group into 5 clusters. 
This conclusion is basically consistent with the data visualization 
from the t-SNE plots in Figures 2-7. Note that when choosing the 
projection dimension q=1, the generalized F-test reduces to the 
Läuter’s exact F-test [13] under the null hypothesis (1) and the 
multivariate normal assumption on all clustered data. This makes 
generalized F-test more applicable than the classical MANOVA 
method, which generally relies on large sample size to obtain the 
asymptotic null distribution. 

CONCLUDING REMARKS 

In conclusion, the integration of the t-SNE plot with the 
generalized F-test offers a powerful and flexible approach to 
analyzing gene expression data. By utilizing the t-SNE plot, 
this method effectively tackles the challenge of classifying 
high-dimensional gene expression data into distinct clusters, 
leveraging nonlinear dimensionality reduction to reveal patterns 
and relationships that may be missed by linear methods. The 
visual clarity of the classified data enhances understanding 
and interpretation, making it a valuable tool in biological data 
analysis. 

The application of the generalized F-test for multiple mean 
comparison in this context is particularly innovative. It addresses 
the limitations of traditional MANOVA method, which may fail 
when the dimensionality of the data exceeds the total sample 
sizes of the clusters. By employing Principal Component Analysis 
(PCA) to project the data into various dimensions, the test can be 
applied across different projected spaces. This layered approach 
not only strengthens the robustness of the hypothesis testing 
but also offers a means of validating results across multiple 
dimensions, adding another layer of reliability. 

The combination of the t-SNE plot and the generalized F-test 
bridges visualization and statistical rigor, allowing researchers 
to make data-driven decisions with confidence. However, the 
rejection of the null hypothesis in this context opens new doors 
for further investigation. Future research should focus on the 
underlying biological significance of the gene clusters and explore 
other statistical methodologies for deeper insight into differential 
gene expression patterns. Overall, this approach represents a 
meaningful step forward in the exploration and understanding of 
high-dimensional gene expression data, promising to contribute 
significantly to the field of bioinformatics. 
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𝐺𝐹(𝑞,) 
= 376 

𝐺𝐹(𝑞/) 
= 376 
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= 376 

0.0000 0.0000 0.0000 0.0000 0.0000 

No. of clusters  
4 p-value 

𝐺𝐹(𝑞)  = 54 𝐺𝐹(𝑞#) = 54 𝐺𝐹(𝑞,) = 54 𝐺𝐹(𝑞/) = 54 𝐺𝐹(𝑞0) = 54 
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No. of clusters  
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Abbreviations: Proj. dim.: Projection Dimension
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𝐺𝐹(𝑞)  = 30 𝐺𝐹(𝑞#)= 30 𝐺𝐹(𝑞,)= 30 𝐺𝐹(𝑞/)= 30 𝐺𝐹(𝑞0)= 30 
0.0000 0.0000 0.0000 0.0000 0.0000 

No. of clusters  
5 p-value 

𝐺𝐹(𝑞)  = 19 𝐺𝐹(𝑞#)= 3.7 𝐺𝐹(𝑞,)= 3.7 𝐺𝐹(𝑞/)= 3.7 𝐺𝐹(𝑞0)= 3.7 
0.0004 0.1596 0.0563 0.0563 0.0563 

Abbreviations: Proj. dim.: Projection Dimension
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