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Human mesenchymal stem cells (hMSCs) have generated great 
attention in tissue engineering applications due to their extensive 
proliferative capacity in vitro, multilineage differentiation 
potential, and immune response modulation ability in vivo [1-
9]. hMSCs also secrete a variety of “trophic factors”, including 
growth factors, cytokines, and adhesion molecules, that can alter 
the tissue microenvironment and thereby rejuvenate or repair 
diseased tissues and cells [2,7,10,11]. Therefore, the hMSC-
induced in vivo repair of dysfunctional tissues can be a result of 
either differentiation or secretion of trophic factors, which alter 
the milieu so as to regenerate the dysfunctional tissue or cells. 

The hMSCs have been proven to be an excellent starting 
material when combined with biodegradable scaffolds, 
either in their undifferentiated or differentiated states, for 
the regeneration of damaged vascular tissues. hMSCs are 
“trophic” and highly regenerative [7,9]. They can adapt to the 
microenvironment in vivo, and be directed by the growth factors 
released by platelets and vascular cells after vessel injury (PDGF, 
TGF-β1, and bFGF) toward a vessel reparative function [7,8]. 
Most notably, the in vivo experiments demonstrated that aligned 
hMSC constructs facilitate endothelial cell (EC) and smooth 
muscle cell (SMC) recruitment and organization in addition to 
providing excellent long-term graft patency, implying that local 
cues within injured vessels in vivo may direct hMSCs toward a 
vessel repairing function [1]. The unique properties of hMSCs 
offer us opportunities to use this single cell type to engineer an 
off-the-shelf tissue engineered blood vessel (TEBV) that can be 
readily used as allografts by any patient without time concerns. 

Cell sheet engineering enables nondestructive cell harvest 
from thermosensitive polymer-coated surface by controlling 
the conformational change of the polymer coating [12,13]. 
The thermosensitive polymers change their hydrophobicity to 
hydrophilicity when the environmental temperature decreased 
below the lower critical solution temperature (LCST) of the 
polymers. This technique avoids the use of proteolytic enzyme 
to digest the ECM structure and intracellular junction, thus 
conserves the cell sheet completeness to the maximum extent 
[13]. Hydroxybutyl chitosan (HBC) is a thermosensitive polymer 
derived from the biopolymer chitosan, a polysaccharide with 
similar structure to glycosaminoglycans (GAG) [14,15]. When 
blended with collagen, the obtained polymer complex coating 

favors the hMSC attachment, proliferation and phenotypic 
expression, in addition to the easy removal of hMSC cell 
sheets from the coated substrate surfaces upon exposure to a 
temperature lower than the LCST of HBC. In our previous study, 
we have successfully used the HBC to coat the nanogratings for 
the ease of harvesting aligned hMSC cell sheets. In the next step, 
we will use the prealigned hMSC cell sheets to produce a TEBV 
with well-defined 3D cellular organization similar to that of the 
SMC organization in natural vessels. 

The optimal functionality of a tissue depends on its 
appropriate histological organization. In natural blood vessels, 
the SMCs and reinforcing extracellular matrix (ECM) fibers 
form an elastomotor helix inclined to the vessel centerline [16-
18]. The angle between the elastomotor helix winding and the 
longitudinal axis of the vessel is 30-50o in large arteries, and 
gradually increases as the vessel diameter decreases [17,18]. 
The alignment of cells also plays an important role in providing 
tissues with stronger mechanical properties. Inspired by the 
structure of natural blood vessels, we are trying to mimic the 3D 
spiral and interwoven organization of SMCs in real blood vessels 
with hMSCs. Towards this goal, we firstly fabricate hMSCs into 
cell sheets that have a high degree of alignment and confluency. 
We then engineer them into a scaffold-free tissue engineered 
vascular graft, with one cell sheet layer inclined 30−50o to the 
centerline, and the second layer perpendicularly to the first. We 
anticipate that the endurance of TEBVs to pressure and stretch 
stress of blood flow will be significantly improved by the 3D 
cellular organization that highly mimics the orientation of SMCs. 

To mimic the 3D spiral and interwoven organization of SMCs in 
real blood vessels, it is crucial to fabricate an hMSC cell sheet that 
has a high degree of alignment and confluency. A grated substrate 
can effectively orient cells [19,20]. Other than the width, the depth 
of the grating is also an important parameter. At the microscale, 
deep gratings appear to produce a non-uniform cell sheet [21]. The 
portion of the cell layer grown on the ridges tends to be thinner, 
rendering the cell sheet more prone to tearing during handling 
and processing. Furthermore, deep grooves would likely lead to 
an increase in the time required for an intact sheet to form [21]. 
We have previously studied hMSC alignment on nanogratings, 
and established that nanopatterns with a grating depth of 250 nm 
exert a more pronounced effect than micropatterns in aligning 
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cells [22,23]. However, although the nanogratings align hMSCs, 
the cells have a great tendency to grow into an uneven patchy 
layer [24]. A desirable cell sheet should comprise cells forming 
tight junctions with each other and secrete plenty of ECM 
proteins to hold the cell sheet together [25-27]. A non-uniform or 
patchy structure could make the cell sheet vulnerable to tearing 
during handling, in addition to compromising the quality of the 
engineered tissue. Another complication of culturing hMSCs on 
nanopatterns is the differentiation driven by nanotopographical 
cues. Nanostructures stimulate hMSCs to differentiate along the 
neuronal, myogenic, and osteogenic lineages in a proliferative, 
non-differentiation medium, while decreasing their proliferation 
[23,28,29]. 

Low O2 is a native physiological condition of the hMSC niche, 
which effectively supports hMSC survival, maintains their primitive 
status, increases the ECM secretion, and considerably improves 
the uniformity of cell layers [24,30-32]. We have previously 
demonstrated that hMSCs grown under 2% O2 conditions secret 
abundant ECM proteins [24,31,32], facilitating the cells to grow 
into even layers with highly aligned morphology on nanogratings 
[24]. Moreover, the cells maintained elevated self-renewal ability 
and preserved higher multi-lineage differentiation ability of 
the hMSCs than their counterpart cultured under conventional 
20% O2 [24,32]. Thus, for engineering vascular grafts using 
hMSCs, it is necessary to maintain their undifferentiated status 
of hMSCs during the process of fabricating hMSC vascular grafts. 
Our previous studies have shown that physiologically low O2 
conditions favor the in vitro expansion of hMSCs, prevent their 
differentiation, stimulate the secretion of ECM proteins, and 
considerably improve the uniformity of cell layers [24,31,32]. It 
is also an important environmental parameter that regulates the 
developmental process and metabolic behavior of blood vessels 
[33,34]. Therefore, we are incorporating physiologically low O2 
conditions in the fabrication process, ensuring a high quality 
hMSC cell sheet and a subsequent mechanically strong TEBV 
while maintaining the “trophic” and regenerative properties of 
hMSCs. 

Once wrapped around the temporary mandrel, the 3D tubular 
cellular assemblies need to be further matured to fuse all the cell 
layers together. Static culture impairs diffusion of nutrients and 
O2

 [35] to 3D tissue constructs. In addition, blood vessels reside 
in a dynamic environment in vivo. During the cardiac cycle, the 
arteries are exposed to significant mechanical strains and variable 
O2 levels. The shear stress in the human arteries is in the range 
of 15∼30 dyn/cm2 [36], whereas the O2 level is about 12% (90 
mmHg) on average [34,37]. Dynamic culture systems have been 
widely utilized [38-41] to mimic physical effects of blood flow 
and pressure in engineering vascular grafts [42-45]. To provide 
sufficient nutrients and also mature the TEBVs in the natural 
environment of coronary arteries, it is necessary to develop a 
bioreactor system that can replicate the physiologically relevant 
O2 and flow conditions of coronary arteries in one single unit. 
Therefore, we are currently developing a novel bioreactor system 
that has the capacity to stabilize the TEBVs in a hydrodynamic 
microenvironment by providing controllable O2 tension and 
physiological pulsatile force to the 3D tubular cellular constructs. 
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