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Tissue engineering involves the restoration of tissue structure 
or function through the use of cells, scaffolds, and regulators 
to stimulate growth [1]. The central paradigm in bone tissue 
engineering involves the use of a biomaterial scaffold, which can 
include osteoprogenitor cells and growth factors to stimulate 
bone growth. Tissue on this scaffold can be grown in vitro and then 
implanted (red route, Figure 1), or it can be directly implanted 
to facilitate bone regeneration in vivo (black route, Figure 1). 
A major goal in the design of this formulation is to promote 
healing by recreating the bone tissue microenvironment, which 
is responsible for regulating the osteoprogenitor cell function to 
maintain homeostasis [1]. Essential to this micronenvironment 
are stimulating factors that promote the osteoinductive capacity 
of the scaffold and which include biochemical, mechanical and 
electromagnetic stimuli. There have been significant efforts 
in the past decade to develop tissue engineering strategies 
based on this paradigm to regenerate bone tissue damaged 
as a result of injuries or conditions such as caneurysmal bone 
cysts, enchondroma and congenital pseudarthrosis [2]. This has 
required the formation of multi-disciplinary teams that apply 
principles of engineering and the life sciences to restore tissue 
structure and function. Although there have been progress in 
delivering these solutions to the clinic, the promises of tissue 
engineering 20 years ago have still to come. There is high 
urgency for tissue-engineered products which can achieve 
these expectations [3,4]. One of the essential components of the 
bone tissue microenvironment is biochemical and biophysical 
stimulation that promote the osteoinductive capacity of the 
scaffold.  Most efforts have focused on the delivery of exogenous 

biochemical stimuli such as growth factors. Effective delivery 
of these biochemical stimuli has proven a challenge because of 
loss of bioactivity, limited control over dose administration, non-
targeted delivery, and lack of availability of required growth 
factors [5].  An area in bone tissue engineering that has not been 
given the proper attention is the application of biophysical cues, 
such as the forces that result from weight-bearing exercise or 
the application of electromagnetic fields. This has prompted an 
opportunity in the search for mechanical and electromagnetic 
stimulatory alternatives for bone tissue regeneration. 

Mechanical stimulus is part the bone tissue microenvironment 
and it is essential for maintaining bone health and homeostasis [6]. 
The process by which cells transduce these force-induced signals 
into biochemical responses is known as mechanotransduction 
and it leads to variations in gene expression, cell function and 
morphology, and extracellular matrix (ECM) remodeling. Bone 
tissue consists of a network of osteocytes, osteoblasts and 
osteoclasts, where the first serve as sensory cells responsible 
for mechanotransduction, while the others function as effector 
cells involved in bone remodeling. When a load is applied to 
bone it causes pulsatile fluid flow through the microscopic 
canals between the lacunae of ossified bone where osteocytes 
reside. The shear stress and mechanical strain generated by 
this flow is sensed by the cells, which then through paracrine 
signaling modulate osteoclast and osteoblast bone remodeling 
[7]. Here the mechanical strain is due to hydrostatic pressure and 
compression and relaxation of the ECM, while the shear stress 
on the surface of the cells is due to the pulsatile fluid flow [8]. 
A problem in simulating this effect is that since bone loading 
and unloading in vivo generates all of these forces concurrently, 
the effects of transient pressure waves cannot be separated 
from those of fluid shear stress or cell strain. This is especially 
relevant for bone tissue engineering constructs consisting of 3D 
scaffold seeded with osteoprogenitor cells that require the use 
of perfusion bioreactors to impart these compressive or tensile 
loading mechanisms to stimulate the production of ECM prior 
implantation [9]. 

Efforts towards understanding the effect of these mechanical 
forces include the application of cyclic hydrostatic pressures 
[10,11], fluid shear stress [12], and more recently the stimulation 
mechanosensitive membrane receptors using magnetic 
nanoparticles [13]. A shared result by all these studies is that Figure 1 The bone tissue engineering central paradigm.
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cell response is affected by the intensity and duration of the 
mechanical stimuli. It is clear that the underlying signaling 
mechanisms are complex and that development of a mechanical 
stimulation device for clinical applications is yet to come. This 
is due to the limited understanding of the signaling events 
involved, and to the complexity of this varied and dynamically 
changing mechanical environment. Further investigations on the 
effect of stimuli intensity and duration are needed to allow the 
development of therapies that will allow clinical applications. 

Early studies related to the effect of mechanical stress on the 
electrical properties of bone demonstrated that compression 
caused a negative potential between inserted electrodes, which 
lead to bone resorption, while tension generated a positive 
potential, which lead to bone growth [14,15]. These findings 
lead to the development of different methods for electrical 
stimulation of bone: direct current, capacitive coupling, and 
inductive coupling [16] (Figure 2). Direct current stimulation is 
an invasive procedure, which involves the surgical placement of 
electrodes, with the cathode placed in the defect and the anode 
place in proximate soft tissue.  Although bone growth has been 
demonstrated using currents between 5 and 100 μA, because of the 
invasive nature of the procedure, direct current stimulation has 
the risk of infection and tissue reaction [17]. Capacitive coupling 
is a non-invasive procedure that consists of electrodes placed on 
top of the skin across from the defect or fracture. Bone growth 
has been demonstrated using potentials of 1-10 V at frequencies 
20-200 kHz, which generate electric fields of 1-100 mV/cm [17]. 
Another non-invasive procedure is inductive coupling, which 
enhances bone healing by using electromagnetic fields generated 
using Helmholtz coils placed across from the defect or fracture 
[18]. These electromagnetic fields are induced at right angles to the 
coil base by the electricity passing through them. The stimulation 
of bone growth has been shown using electromagnetic fields 
0.01-2.0 T in strength with electrical field of 1-100 mV/cm at the 
fracture site [19]. In addition to the stimulation of bone growth, 
low-frequency pulsed electromagnetic fields (PEMF) have been 
shown to induce vascular growth [20].  The have also been shown 
to increase the expression of the osteogenic transcription factor 
Runx-2 and a decrease of the expression of the adipogenic factor 
PPARγ in mesenchymal stem cells, which are co-repressed [21]. 
This effect is especially significant when considering that the 
balance between these cell populations is believed to be related 
to diseases such as osteoporosis and diabetes [22]. At the cellular 
level, low-frequency PEMF stimulation is thought to modulate the 
expression level of endogenous osteogenic cytokines and their 

receptors [23-25]. Although similarly to mechanical stimulation, 
the underlying mechanisms involved in this type of biophysical 
stimulation are complex and remain elusive. There is high urgency 
in developing tissue-engineered products that can be brought to 
the clinic for bone regeneration applications. The development 
of non- to minimally invasive biophysical stimulatory methods 
shows great potential in being able to answer this call and should 
be explored more closely, keeping in mind that the importance of 
understanding the underlying cellular processes involved.  
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