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Abstract

Climate change, limited fossil resources and steady population growth drive 
industrial development of sustainable biomass based processes for production of fuels, 
platform and specialty chemicals. In this context phototrophic microalgae cultivation 
processes are poised to play a central role for development of next generation 
bioprocesses due to high cellular growth rates and excellent yields of value adding 
products. Additionally, microalgae cultivation does not compete with food production 
and does not require agricultural land. However, industrial scale realization of 
microalgae cultivation has been hampered by technical issues such as optimal light 
and gas supply and the economic configuration of the bioreactor system. The resulting 
multi-parameter space complicates a targeted process optimization. To streamline 
experimental process optimization mathematical modeling using design of experiment 
(DoE) methodologies can be applied. Initial experimental data can be used to refine 
primary mathematical models. Therefore, DoE can be applied for consolidation of 
an iterative process optimization. However, DoE model choice and optimization in a 
dependent multi-parameter space is complex and requires diligent analysis of model 
design and parameter outcome. Testing data for normality is essential to derive a 
viable model and experimental data. If these prerequisites are not met misguided 
approaches to process optimization may result. In this study we reanalyze published 
data and demonstrate methods to streamline interpretation of DoE data. Further, 
methodologies and strategies for data transformation are presented that improve 
model evolution. To the best of our knowledge, this is the first time that a sequential 
strategy for DoE model evolution was applied to an algae cultivation process. 
Guiding iterative process optimization for algae cultivation by robust DoE models will 
significantly contribute to accelerate process scale-up and time to market scenarios. 
Ultimately, these factors determine success of an industrial process design. 

INTRODUCTION
The eminent end of fossil fuel resources, climate change and a 

continuously growing world population drive the development of 
sustainable fuel and commodity processes [1]. However, current 
industrial processes for production renewable energy carriers 
are associated with the redirection of food to fuel feedstocks, 
destruction of agricultural land and excessive use of potable 
water [1-2]. Therefore, there is an urgent need to establish new 
technologies that do not compete with food production and 
do not result in land use change. A leading technology option 
is the photoautotrophic cultivation of microalgae species for 
production of biofuels, renewable chemicals, commodities and 
even pharmaceuticals [3-8].

A significant advantage of microalgae technology is efficient 
use of CO2, rapid growth rates and the accumulation of high 
concentrations of value adding products [3-10].  Further, algae 
can be grown on marginal lands using salt instead of potable 
fresh water. Therefore, there is no competition with production 
of food resources required to maintain an ever growing 
population [3]. The efficiency of algae cultivation and hence the 
yield of biogenic feedstocks for renewable processes is highly 
dependent on microalgae species, the cultivation mode and 
cultivation conditions [3-11].  Numerous studies have examined 
the cultivation of various algae strains under different cultivation 
mode, particularly examining different photobioreactor 
configurations with open pond cultivation systems [3-9]. This 
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is of particular value to estimate the economic efficiency of 
specific cultivation methods [9]. However, these studies were 
predominantly conducted under different cultivation conditions, 
varying media composition, gas input, illumination and 
temperature regimes [4-8]. Therefore, data for these studies are 
mostly not directly comparable. 

To derive robust and scalable algae cultivation however 
requires systematic studies of process parameters [9]. Of 
particular interest is the importance of a particular cultivation 
parameter as this will determine the strategy for downstream 
optimization processes. To achieve process parameter 
prioritization, mathematical models can rapidly guide the 
experimental validation procedures. To this end a few algae 
cultivation studies have employed the mathematical toolbox of 
design of experiment (DoE) methodologies [10-11].     

However, the application of design of experiments 
methodology is complex with pitfalls that can lead to data 
misinterpretation. In this paper we re-analyze literature data [10] 
and discuss the design of experiments methodologies. Ultimately, 
this DoE based approach can be a basis for a systematic strategy 
targeted at the optimization of algae cultivation processes. 
To derive a scalable, robust process it is imperative to obtain 
an exact mathematical description of complex algae systems, 
which can guide process optimization to find the optimal growth 
conditions. 

METHODS
DOE models and data sets for cultivation of the saline, 

lipid forming microalgae of Dunianella terticola butcher (ATCC 
30929), which involved media composition and illumination 
regimes were taken from the literature [10]. The study examined 
the effects of culture media components such as KNO3 (N-source) 
and NaCl as well as the importance of the illumination on biomass 
and triglyceride yields. A key finding was that the concentration 
of the nitrogen source governed the biomass and lipid yield, while 
the illumination regime was a subordinate process parameter. 
To test the validity of these models we have reanalyzed the 
DoE data sets using the design of experiments software tools of 
the Statistica 9 software suite [12]. To examine the validity of 
the literature data we included tests on normality, analysis of 
variance (ANOVA) and used the statistically relevant terms at 
the ≥ 95% probability level for mathematical model building and 
regression analysis [13].

RESULTS AND DISCUSSION
Re-Evaluation of Dunianella sp. growth parameters 
according to 

i. Dependence of biomass, lipid yield on light intensity and 
medium salt concentrations

The influence of light intensity on algae growth is one of the 
most critical variables for any algae cultivation scale up, since 
photosynthesis rate is a function of light intensity [2,4]. However, 
intensive illumination particularly at the beginning of the 
cultivation phase can be counterproductive as it leads to bleaching 
of photosynthetic pigments and cell death [4]. For industrial scale 
up of cultivation systems it is of critical importance to determine 

the optimal operating window in terms of light intensity, since 
illumination for outdoor algae biomass production is dependent 
on the geographic latitude and the average climate conditions. 
For small laboratory applications the illumination can be tuned 
by lamps, but electricity costs need to be controlled and can be an 
economic bottleneck. In any economic scenario measures have 
to be taken to apply the optimum light intensity to the growth 
media [14]. 

Algae based lipids are regarded as the future oil source for 
biodiesel [3]. Massart and Hantson report on the influence of 
light intensity, potassium nitrate and sodium chloride on biomass 
productivity and lipid content [10]. The authors used Dunaliella 
tertiolecta (ATCC 30929) that has been cultured in a modified 
NORO medium. For optimal phototrophic growth carbon dioxide 
was applied as a sole carbon source by bubbling air (0.036% v/v 
CO2) through the medium. Effects of light intensity, potassium 
nitrate and sodium chloride concentrations were investigated by 
DoE methodologies using a face centered response surface area 
design with three factors (independent variables) in the ranges 
100, 200, 300 [μmol m-2 s-1] for light intensity, 1, 2, 3 [g l-1] for 
potassium nitrate and 10, 30, 50 [g l-1] for sodium chloride. The 
dependent variables (output variables) measured were biomass 
productivity [mg l-1 day-1] and lipid content [wt% of dry mass] 
after 6 days of culture. We have tested the validity of the applied 
model and resulting data sets using a test of normality and 
ANOVA.

ii. Normality Test of available data sets  

For the proper analysis of designs of experiments a normal 
distribution of the dependent variables is required, since all 
statistical models are based upon a normality premise. In our 
re-examination of the data [10] we applied the Shapiro-Wilk test 
(Figure 1) on normality for biomass productivity [mg l-1 day-1], 
and lipid content [wt% of dry mass]. 

The normal probability plot (Figure 1) shows that for the 
algae lipid content the dependent variables biomass productivity 
and dry biomass follow a normal distribution, while lipid content 
did not pass the normality test. If the data set adheres to a normal 
distribution, the data points should follow a diagonal line, and 
the probability value should be greater than the probability 
level chosen. Sample distribution in Figure 1 indicates that data 
for biomass productivity have a much better fit to the diagonal 
line compared to thelipid content. This visual representation 
is confirmed by the outcome of the Shapiro-Wilt test: The 
probability level is set to p=0.05 for the Null-hypothesis, that data 
do not follow a normal distribution. For biomass productivity 
p=0.20483 for the Shapiro-Wilk test and greater than p=0.05. 
Therefore the Null-hypothesis has to be rejected. Consequently, 
the data can be regarded to follow a normal distribution. For 
lipid content the Shapiro-Wilk test calculates p=0.00077, that is 
smaller than the p=0.05 probability level. In this case the Null-
hypothesis is accepted. The data for lipid content do not follow 
a normal distribution. To obtain normality for lipid content the 
raw data can be subjected to a mathematical transformation. 
Albeit ANOVA is regarded to be very robust even for non-normal 
distributed data [6], it potentially can lead to inconsistent models. 
In the course of this report we demonstrate that the author’s 
modeling and interpretation of the light intensity influence on 
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Biomass productivity - Shapiro-Wilk-Test on normal 
distribution, p=0,20483 - passed

Lipid-content: Shapiro-Wilk-Test on normal 
distribution, p=0,00077 - failed

Figure 1 Normal probability plot and Shapiro-Wilk test on normality for biomass productivity [mg l-1 day-1], and lipid content [wt% of dry mass] for data generated by 
[10].

the lipid content was limited. We will further show how the Box-
Cox transformation of lipid content data leads to more robust 
models and data interpretation. Our data re-analysis indicates 
that the original authors’ data interpretation can be improved to 
a valuable outcome. 

iii. ANOVA and modeling for biomass productivity

For the determination of the statistically relevant terms 
an analysis of variance was performed. The ANOVA bases on 
an equation describing the linear, quadratic and quadratic 
interaction terms for the biomass productivity response on light 
intensity, potassium nitrate and sodium chloride (see Equation 
1). 

Equation 1: 

Biomass productivity = k0 + k1 [KNO3] + k2 [NaCl] + k3 [Light] 
+ k11 [KNO3]2 + k22 [NaCl]2 + k33 [Light]2 + k12 [KNO3] [NaCl] + 
k13 [KNO3] [Light] + k23 [NaCl] [Light]; [Eq. 1]

Our re-calculation of the statistically relevant equation 
terms on biomass productivity confirm the author’s findings. 
In statistical terms only k2 [NaCl], k3 [Light], k33 [Light]2 and k0 
(intercept) contribute at a 95% confidence level to the biomass 
productivity response. The influence of the nitrogen source in 
the chosen range is statistically insignificant. Consequently, the 
model should only contain the coefficients k0, k2, k3 and k33 and 
therefore is reduced to the statistically relevant terms resulting 
in (See Equation 2).

Equation 2:

Biomass productivity = k0 + k2 [NaCl] + k3 [Light] + k33 [Light]2; 
[Eq. 2]

In the original paper the authors used all equation terms 
for modeling. Comparing the results of the modeling for the 
all factor equation (Equation 1) with our statistically refined 
equation (Equation 2) the differences of the predicted values are 

negligible. However, the confidence and prediction intervals are 
significantly smaller in case of the statistically refined model and 
therefore the predictability of the model is more accurate. 

Table 1 shows the calculation for the factor levels: 200 [μmol 
m-2 s-1] for light intensity, 2 [g l-1] for potassium nitrate and 30 [g 
l-1] for sodium chloride.

The improved predictability of Equation 2 can be explained 
by statistic descriptors. The mean square residual or mean 
square error is lower for the refined model (Equation 2) since 
the residual degrees of freedom are higher for the refined model 
compared to the all factor model (Equation 1). This outcome 

Regression Eq. 1 Eq.2
Constant -6,90536 -1,45000
(1)KNO3 [g * l-1](L) -0,39107
KNO3 [g * l-1](Q) 0,10714
(2)NaCl [g * l-1](L) -0,18107 -0,44000
NaCl [g * l-1](Q) -0,00098
(3)light intensity [µmol * m-2 * s-1](L) 0,45234 0,44300
light intensity [µmol * m-2 * s-1](Q) -0,00069 -0,00071
1L by 2L -0,00625
1L by 3L 0,00625
2L by 3L -0,00094

MS Residual Eq. 1 Eq. 2
23,15045 16,36429

Degrees of Freedom (df) for
Error Term Calculation

Eq. 1 Eq. 2
8 14

Prediction Eq. 1 Eq. 2
Predicted 45,8 45,8
-95,% Conf. 41,5 42,7
+95,% Conf. 50,2 48,8
-95,% Pred. 33,9 36,5
+95,% Pred. 57,7 55,0

Table 1: Comparison of the two models expressed in Equation 1 and 2.
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exemplifies that the essence of any effective DoE model building 
is the iterative elimination of statistically insignificant terms, 
which leads to a more simplified and statistically more accurate 
model. Therefore, the simplified process model in (Equation 2) 
provides for an accelerated and exact model interpretation. 

Further, the mean square (MS) residual is a qualitative 
measure how good the fit corresponds to the data points. In 
this context, a low value for MS residual indicates an improved 
mathematical description of the process. If the model leads to 
a higher degrees of freedom value (df-value) more data points 
can be used for the error term calculation and the confidence 
and prediction intervals become smaller. Therefore, the refined 
model in Equation 2 is more powerful for process prediction 
purposes. In fact, narrowing of the confidence and prediction 
intervals indicates that the refined model in (Equation 2) is more 
suitable for establishing industrial process scale-up since the 
derived risk analysis will be more accurate. 

iv. ANOVA and modeling for lipid content

In the original report [10] data for the lipid contest has not 
been subjected to a normality test. Subsequently, ANOVA data 
analysis and model building was performed with the raw, non-
normalized data. 

By contrast, in our study application of the Shapiro-Wilk test 
for the lipid content confirmed a non-normal data distribution. In 
consequence, the normality prerequisite for variance analysis is 
not given for the lipid content. 

For the determination of the statistically relevant factors 
the original publication describes an analysis of variance. The 
ANOVA bases on an equation describing the linear, quadratic 
and quadratic interaction terms for the biomass productivity 
response on light intensity, potassium nitrate and sodium 
chloride (see Equation 3). 

Equation 3:

Lipid Content = k0 + k1[KNO3] + k2 [NaCl] + k3 [Light] + k11 
[KNO3]2 + k22 [NaCl]2 + k33 [Light]2 + k12 [KNO3] [NaCl] + k13 
[KNO3] [Light] + k23 [NaCl] [Light]; [Eq. 3]

In the original paper the authors inferred based on ANOVA 
analysis that only the terms k0 (intercept), k2 [NaCl] and k22 
[NaCl]2  are statistically significant. Therefore it was concluded 
that light intensity has no statistical relevance. Consequently, the 
proposed growth model for Dunaliella sp. was summarized as in 
( See Equation 4)

Equation 4:

Lipid Content = k0 + k2 [NaCl] + k22 [NaCl]2; [Eq. 4]

In the original paper the authors used all coefficients for 
the modeling (Table 2). Inconsequently, it was concluded based 
on Equation 3 that medium light intensity at highest NaCl 
concentration gives the best results regarding lipid content and 
no photo inhibition takes place. 

ANOVA analysis in the original paper shows, that the 
quadratic term for light intensity has a p-value of 0.08. This is 
close to the chosen probability level having a p-value of 0.05. 
This indicates, that in a refined model the term [Light]2 could 

be of statistical relevance. For clarification it has to be stated 
that a p-value of 0.05 equals 95% probability that the term has 
statistical relevance. The null-hypothesis assumes that the term 
is not statistically relevant. 

However, the deviation of a more accurate model based 
upon statistically relevant data should follow a procedure of 
consecutive elimination of the most irrelevant terms followed 
by an ANOVA for the model without the excluded terms. Since 
the exclusion of terms changes the model, the ANOVA results and 
regression coefficients change as well. Following the procedure 
of step-by-step elimination of the statistically least relevant terms 
the p-values of the remaining terms usually show an evolution 
towards lower numbers, since the model gets more accurate in 
statistical means. 

v. Modeling of the raw lipid content data

For the evolution of a statistical model for the non-
transformed data we followed the above described consecutive 
term elimination followed by ANOVA. In this context, (Figure 
2) shows the sequential evolution of the model. Examination 
of (Figure 2) indicates, that the term [light]2 in iteration step 4 
moves below the 0.05 p-threshold and therefore is statistically 
relevant within the 95% probability level. Contrary to the original 
report ANOVA analysis indicates that the quadratic term of light 
intensity is statistically significant.

This is a major difference regarding the mathematical 
model of the experimental data. The claim on independence of 
the system to light intensity should be revised since the refined 
model indicas that photo-inhibition take place [15,16].

The re-evaluation of the raw data leads to a different model 
(refined raw data model):

Equation 5: 

Lipid Content = k0 + k2 [NaCl] + k22 [NaCl]2 + k33 [Light]2

The outcome of the iterative modeling approach results in the 
statistically relevant terms: linear and quadratic sodium chloride 
concentration and quadratic light illumination. Again, potassium 
nitrate concentration variation has no significant impact on the 
lipid content. The influence of sodium chloride is predominant 
and high light intensities lead to photo-inhibition. 

vi. Modeling of the Box-Cox transformed lipid content data

If dependent variables do not follow normal distribution 
the raw data must be transformed. In this respect, a Box-Cox 
transformation of the data is a straightforward methodology that 
can be applied to identify a suitable transformation algorithm. In 
principle, the Box-Cox transformation is a power transformation 

Approximate
Lambda

Suggested transformation of the dependent 
variable

- 1 Reciprocal

- 0.5 Reciprocal Square Root

0 Natural Logarithm

0.5 Square Root

1 None

Table 2: General Box-Cox transformation rules according to [13].
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Figure 2 Consecutive evolution of the mathematical model based on stepwise ANOVA.

that can shift the raw data towards normality [13]. The most 
important parameter resulting from this procedure is the lambda 
(λ) value. If λ ≠ 0, transformation λ equals the exponent applied in 
the power transformation for each dependent data point, if λ = 0, 
each data point of the dependent variable should be transformed 
to its natural logarithm value. As indicated in various literature 
reports it must not be the exact λ value [13,17]. In this respect, 
(Table 2) summarizes λ values and corresponding transformation 
procedures that can be applied to normalize experimental data 
[3,18,17].

We ran a Box-Cox transformation on the raw data for lipid 
content. The iteration led to λ= -0.0183 which is close to Zero. 
Adhering to rules in (Table 2) the lipid concentration data 
were transformed to its natural logarithm. To validate if the 
transformed data ln (lipid content) follow a normal distribution, 
the Shapiro-Wilk test was applied. 

Figure 3 shows that the natural logarithm-transformed data 
passed the test on normality and therefore was used for the 
ANOVA and model evolution. The initial formula for the modeling 
is shown in equation

Equation 6: 

ln (Lipid Content) = k0 + k1 [KNO3] + k2 [NaCl] + k3 [Light] + 
k11 [KNO3]2 + k22 [NaCl]2 + k33 [Light]2 + k12 [KNO3] [NaCl] + k13 
[KNO3] [Light] + k23 [NaCl] [Light]; 

Using the consecutive elimination of the least significant term 
followed by ANOVA of the term reduced model the evaluation 

converged to a model with the statistical significant terms [NaCl], 
[NaCl]2 and [Light]2 leading to equation 7.

Equation 7: 

ln(Lipid Content) = k0 + k2 [NaCl] + k22 [NaCl]2 + k33 [Light]2;

The analysis of the natural logarithm transformed data shows 
the same statistically relevant terms compared with our revised 
raw data analysis. On first sight it might be not necessary to apply 
a Box-Cox transformation. However, comparing the models will 
show significant differences. 

vii. Comparison of the different models for lipid content

Table 3 shows the regression results, the mean square 
residuals, degrees of freedom for error term calculation, the 
prediction results for the center point of the design of experiments 
at [KNO3] = 2, [NaCl] = 30 and [Light] = 200 for model comparison 
and the adjusted regression coefficients for the ANOVA effect 
estimates. The regression equations for the refined models 
(Equation 5 and Equation 7) contain less terms compared with 
the all term Equation 3. This can be deduced from the degrees of 
freedom. Therefore, the error term calculation is more accurate 
for Equation 5 and Equation 7 and results in broader confidence 
and prediction limits for the all term model (Eq3). 

Albeit the refined models (Equation 5 and Equation 7) contain 
identical statistically relevant terms, the model using Box-Cox 
transformed data (Equation 7) is more accurate. In contrast to the 
other models the Box-Cox transformed data meet the normality 
premise. ANOVA calculations indicate, that the MS residual for 



Central

Bohnen  and Brück (2013)
Email: bohnen@bb-si.de

JSM Biotechnol Bioeng 1(3): 1015 (2013) 6/8

ln (lipid content): Shapiro-Wilk- Test on normal distribution: p=,58140 - passed

Figure 3 Normal probability plot and Shapiro-Wilk-Test results for natural logarithm Box-Cox transformed lipid content data.

Regression Equation 3  Equation 5 Equation 7

Raw data
published results

Raw data
Refined model

Box-Cox (ln) transformed data
Refined model

Dependent Variable Lipid Content Lipid Content Ln(Lipid Content)

Regression equation

Constant -1,68880 1,817063 0,189049

(1)KNO3 [g * l-1](L) 2,49021

KNO3 [g * l-1](Q) -0,64393

(2)NaCl [g * l-1](L) -0,24326 -0,075170 -0,003764

NaCl [g * l-1](Q) 0,00470 0,002535 0,000606

(3)light intensity [µmol * m-2 * s-1](L) 0,03684

light intensity [µmol * m-2 * s-1](Q) -0,00010 -0,000004 -0,000003

1L by 2L 0,01125

1L by 3L -0,00048

2L by 3L 0,00008

MS Residual Equation 3 Equation 5 Equation 7

0,640 0,509 0,079

Degrees of Freedom (df) for Error Term Calculation
Equation 3 Equation 5 Equation 7

8 14 14

Prediction Equation 3 Equation 5
 Equation 7

Back transformed

Predicted 2,09 1,70 1,68

-95,% Conf. 1,36 1,01 1,42

+95,% Conf. 2,82 2,38 2,08

-95,% Pred. 0,11 -0,35 0,89

+95,% Pred. 4,08 3,75 3,18

Effect Estimates (ANOVA) Equation 3 Equation 5 Equation 7

Regression coefficient R2adjusted 0,73 0,78 0,85

Table 3: Comparison of the regression models 3, 5 and 7 regarding lipid content.
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the transformed data is much lower. Consequently, error term 
calculation is more accurate. For the reason of comparability the 
prediction data for natural logarithm transformed data were re-
transformed by an ex function. It can be deduced from table 3, 
that the confidence and prediction intervals are more constraint 
for the model using Box-Cox transformed data and most relaxed 
for the all term raw data model. In addition, the regression 
coefficients for the ANOVA effect estimates is optimized for our 
recalculation (Equation 7). 

The calculation of the lipid content using the all term model 
(Equation 3) and the refined raw data model (Equation 5) is 
insignificant in statistical terms since the confidence limits are 
very broad. Only the model using the transformed data (Equation 
7) allows an accurate mathematical description and could be 
used for industrial scale-up purposes. 

CONCLUSIONS
Limited fossil resources, the climate change and steady 

population growth drive industrial development of sustainable 
biomass based processes for production of fuels, platform and 
specialty chemicals [1]. Due to excellent biomass and product 
yields phototrophic microalgae cultivation processes are poised 
to play a central role in the development of next generation 
renewable processes [2-4]. Microalgae cultivation does not 
compete with food production and does not require agricultural 
land. However, industrial scale realization of microalgae 
cultivation is complicated by technical issues such as optimal light 
and gas supply and the economic configuration of the bioreactor 
system. The resulting multi-parameter space complicates 
experimental process optimization. To streamline experimental 
process optimization mathematical modeling using design of 
experiment (DoE) methodologies can be applied [10]. However, 
devising meaningful models that can guide experimental process 
optimization requires exact analysis of process parameters and 
needs to adhere to statistical prerequisites for model building. 
Incoherent models and data analysis may prohibit accurate 
process optimization. In this study, we have re-analyzed literature 
data and DoE models for optimization of Dunaliella tertiolecta 
cultivation a closed bioreactor system [10]. We demonstrate that 
the literature applied model can be further improved and present 
strategies and models that lead to a more accurate interpretation 
of resulting data. In contrast to the reported mathematical model, 
our refined model clearly indicates that production of algae 
biomass and associated triglycerides is primarily dependent 
in light supply to the culture. If initial data sets, i.e. the light 
dependence of triglyceride formation [10], does not pass a 
normality test, methods such as the Box-Cox transformation 
should be applied to obtain normality. The transformed and 
normal distributed data can then be utilized for sequential model 
building and parameter examination. For rapid technical scale-
up and commercialization of algae cultivation procedures high 
accuracy process modeling is required. Strict application of DoE 
design strategies presented here and statistical prerequisites 
will significantly improve algae cultivation processes, thereby 
accelerating technical scale-up and commercialization of algae 
cultivation processes. Good DoE models will not only accelerate 
commercialization but also enable an accurate risk analysis due 
to consideration of confidence and prediction limits.

In summary, design of experiment is a very powerful tool 
for the optimization of biotechnological processes and the 
mathematical modeling of the statistical relevant terms at a given 
probability level [18]. However, to avoid misinterpretation and 
to obtain accurate results, data analysis must follow several rules 
[19]. 

The DoE methodology requires normal distributed data 
[17,19,20]. After completion of the experimental series a test 
on normal distributed data is a prerequisite. In this context, the 
Shapiro-Wilk test is robust method. Failing the test on normality 
usually is caused by skewed distribution pattern or due to the 
experimental set-up. 

To transform skewed distributions the Box-Cox transformation 
is the method of choice. If Box-Cox transformed data passes 
the test on normality the evaluation should be continued with 
transformed data. In case of Box-Cox transformation failure the 
whole data set and the experimental set-up has to be revised 
regarding e.g. inaccurate measurements, analytical precision, 
changes in raw materials or reaction conditions [21]. 

Accurate mathematical modeling should follow a consecutive 
elimination of the least statistical relevant terms based on the 
analysis of variance (ANOVA) until all terms of the mathematical 
model show statistical relevance at a given probability level. As a 
result simplified models with enhanced statistical relevance are 
obtained [22].

In case of Box-Cox transformation the mathematical model 
has to be back-transformed by the inverse function applied to the 
data [13]. 

The resulting mathematical description only contains 
statistical relevant terms and allows a solid scientific 
interpretation of the microorganism’s response on the selected 
cultivation parameter [23].

In this study we analyzed published data applying the rules 
and prerequisites of DoE model building. We demonstrated that 
accurate model evolution results in improved predictability. 

Our analysis adopting the sequential model evolution clearly 
indicates that this methodology leads to robust model building 
and simplified data interpretation. 

To the best of our knowledge, this is the first time that a 
sequential model evolution approach [22] was adopted for algae 
process optimization [10,11,15,14,23-31]. Guiding iterative 
process optimization for algae cultivation by robust DoE models 
will significantly contribute to accelerate process scale-up and 
time to market scenarios. Ultimately, these factors determine 
success of an industrial process design.
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