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Abstract

Background and Aim: Although reactive oxygen species (ROS) are often 
attributed to pathological outcomes, they do function as important modulators of 
many cellular processes involved in homeostasis and cell survival. Hyperbaric oxygen 
therapy (HBOT) initiates ROS production and signaling to promote angiogenesis, while 
limiting inflammatory and prothrombotic processes. In this study we set out to elucidate 
potential novel ROS-mediated, pro-angiogenic pathways. 

Methods: Human umbilical cord endothelial cells (HUVECs) were subjected to 
standard HBOT parameters. HBOT-induced differential gene expression analyses 
were performed by coupling high-throughput RNA screening with bioinformatics. 

Results: HBOT differentially regulated genes involved in a myriad of biological 
process, including a VD3 1A hydroxylase/Vitamin D Receptor (VDR) signaling cascade 
that is both ROS responsive and pro-angiogenic. 

Conclusions: HBOT regulates ROS responsive angiogenic genes, potentially in a 
VDR dependent manner.

ABBREVIATIONS
HBOT: Hyperbaric Oxygen Therapy; VDR: Vitamin D 

Receptor; ROS: Reactive Oxygen Species; CYP27B1: Cytochrome 
P450 Family 27 Subfamily B Member 1; ADCYAP1R1: Adenylate 
Cyclase Activating Polypeptide 1 (pituitary) Receptor Type I; 
ARHGAP6: Rho GTPase Activating Protein 6; NOS1: Nitric Oxide 
Synthase 1; SIRT6: Sirtuin 6; TYP: Tyrosinase

INTRODUCTION
Reactive  oxygen species (ROS) are second messengers that 

serve many functions spanning immune response augmentation 
to cell cycle regulation. ROS, such as superoxide anion (O2

−), 
hydrogen peroxide (H2O2), hypochlorous acid (HOCl), and 
hydroxyl radical (•OH), are byproducts of oxygen (O2) metabolism 
that serve to maintain redox homeostasis in many physiological 
processes [1]. Redox regulation occurs via interplay between 
oxidative and anti-oxidative enzymes and processes. In 
endothelial cells (ECs), ROS are produced by enzymes such as 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 

(NOX), xanthine oxidase, and endothelial nitric oxide (NO) 
synthase (eNOS); and processes such as eNOS uncoupling and 
mitochondrial transport chain activity [1-3]. These are countered 
by antioxidant enzymes such as superoxide dismutase (SOD), 
glutathione peroxidase (GPx), thioredoxin-dependent peroxidase 
(TrxR2) and catalase [2,3]. 

NOXs are membrane bound enzymes that are composed of 
six subunits facing the extracellular space. The four isoforms 
expressed in vascular tissues are NOX1, NOX2, NOX4, and NOX5 
[4]. NOXs couple electrons (e−) from NADPH to O2 producing 
reactive free radical superoxide anions by: NADPH + 2O2 ↔ 
NADP+ + 2O2

− + H+. ROS produced by NOXs are reduced by SOD, 
which catalyzes the conversion of two O2

− molecules into a 
molecule of H2O2, which is further reduced to water (H2O) and O2 
by GPx, TRXR2, and catalase [3,5]. Mitochondria work in concert 
with NOXs to maintain redox homeostasis. ROS produced by 
NOX increase mitochondrial activity and ROS production; while 
mitochondrial ROS often increase NOX ROS instigating a feed 
forward cycle [2]. During aerobic metabolism, most O2 is reduced 
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to H2O in the mitochondria.   However, e- transfer through the 
mitochondrial respiratory chain, particularly at complexes I and 
III, offers the opportunity for early reduction of O2 producing 
O2

− instead of H2O [6]. Mitochondrial enzymes such as pyruvate 
dehydrogenase, alpha-ketoglutarate dehydrogenase, glycerol 
3-phosphate dehydrogenase, or processes such as fatty acid beta-
oxidation, also contribute to the production of O2

− [6].

It is well established that prolonged oxidative stress causes 
vascular dysfunction and disease, such as atherosclerosis, leading 
to tissue ischemia. At the same time, the initiation of tightly 
regulated angiogenic pathways is a natural physiological response 
to tissue ischemia.  Interestingly, the pharmacological reduction 
of ROS availability decreases angiogenesis by either activating 
ROS scavengers or SOD; or by inhibiting ROS production via NOXs 
[7]. This is in part due to down regulation of eNOS and consequent 
decrease in NO production [8]. The interplay between ROS and 
NO is required to maintain EC health, signaling and function [3]. 
ROS increases eNOS activity; and hence, NO production through 
caspase signaling [9]. Several studies have demonstrated the 
importance of ROS and NO signaling in angiogenesis [10-13]. 
For example, O2

− and H2O2 induce angiogenesis by recruiting 
many cell types and mediators that facilitate differentiation, 
proliferation, migration, and adhesion [14].  Redox reactions 
also recruit pro-angiogenic factors, such as vascular endothelial 
growth factor (VEGF), placental growth factor (PGF), platelet-
derived growth Factor-B (PDGFB), transforming growth factor 
β (TGF- β), hypoxia inducible factors (HIFs) and angiopoietin-1 
(ANG-1) [15-17].  

Controlled oxidative treatments, such as hyperbaric oxygen 
therapy (HBOT), improve angiogenesis for certain pathologies 
such as impaired wound healing and ischemic heart disease. 
Currently, Undersea and Hyperbaric Medical Society has defined 
13 indications for which HBOT is approved, including air/gas 
embolisms, CO poisoning, acute traumatic ischemia, and chronic 
wounds [18]. HBOT increases the partial pressure of oxygen 
in circulating plasma, which stimulates oxygen-dependent 
collagen matrix formation, a crucial step in wound healing and 
angiogenesis [19]. 

Mechanistically, HBOT stimulates the upregulation of 
NOX resulting in mitochondrial O2

− production [6,17] and 
concomitantly reduces the circulating levels of pro-inflammatory 
cytokines, which are caused by ROS under stress conditions and 
wounded tissue [19]. This transiently-induced oxidative stress 
response not only upregulates growth hormones/factors; but, 
also activates and mobilizes stem/progenitor cells (SPCs) through 
transactivation of HIF-1 and 2 via thioredoxin reductase and 
thioredoxin [19,20]. Additionally, HBOT-induced ROS triggers the 
activation of signaling pathways that are involved in EC migration 
and invasion such as the mitogen-activated protein kinase 
(MAPK) family, c-Jun NH-2 terminal kinase, and extracellular 
regulated kinase (ERK) [21]. Although oxidative stress is often 
perceived as a precursor to pathology, acute oxidative stress 
does not necessarily result in oxygen toxicity.  Oxidative stress, 
as characterized by elevated ROS, regulates many physiological 
processes involved in systems homeostasis, including 
angiogenesis in wounded or ischemic tissue. HBOT has proven 
effective in promoting ROS production and signaling necessary 

for neovascularization by instigating local EC proliferation and 
migration and systemically by recruitment and differentiation of 
stem progenitor cells (SPC) to form new vessels while limiting 
pro inflammatory and prothrombogenic mechanisms [19,20]. 
Although key mediators of angiogenesis, such as HIFs and VEGF 
[18], have been shown to be up regulated under HBOT, the 
molecular networks involved have not been delineated. Using 
high throughput RNA-sequencing and bioinformatics, this study 
uncovered 1α,25(OH)2D3/VDR signaling as a potential regulator 
of a novel redox responsive network involved in angiogenesis 
[19]. In this study, we set out to explore the effects of HBOT on 
the expression of genes involved in redox reactions to uncover 
potential novel pro-angiogenic-redox pathways. We coupled a 
high-throughput RNA expression analysis with bioinformatics 
to uncover potential ROS-responsive, pro-angiogenic genes 
differentially regulated following HBOT as an ROS stimulus. From 
this analysis, we uncovered the nuclear vitamin D transcription 
factor (VDR) as a potential HBOT-responsive initiator of a novel 
angiogenic cascade. 

MATERIALS AND METHODS

Methods

Cell culture: HUVECs were cultured in Endothelial Cell 
Growth Medium (Sigma-Aldrich   Cat#  211-500) supplemented 
with 15% (vol/vol) fetal bovine serum (FBS) and Primocin 
antibiotic (InvivoGen catalog no. ant-pm-1), and grown to 
confluency in a CO2 incubator at 37oC and 5% CO2.

HBOT: Cells were incubated in 2.0 atmospheres (atm) at 
100% FiO2 for 30 minutes in a model 1300 hyperbaric chamber 
(Sechrist industries) prior to lysis. Cells were placed on a water 
heat pad warmed to 37oC and monitored throughout the duration 
of the treatment via visual inspection.  

RNA-sequencing: RNA was extracted with TRIzol reagent 
(ThermoFisher scientific cat#15596018) according to the 
manufacturer’s instructions. Following isolation, the quality of 
the RNA analyzed with a Bioanalyzer prior to fragmentation with 
a Bioruptor UCD-200 sonicator to a length of 200 bp. Following 
sonication, the quality of the RNA and fragmentation length 
was analyzed a second time with a Bioanalyzer.  cDNA was 
then prepared with the use of the Ovation RNA-Seq System V2 
(NuGEN Cat# 7102) according to the manufacturer’s instructions 
and sequenced on a illumine Hi Seq sequencing system. Sequence 
alignments and transcriptome analysis was conducted in R 
statistical environment and the system pipe R/Bioconductor 
software packages [22].  

mRNA quantification: RNA was purified using TRIzol 
reagent. We converted 2μg RNA to cDNA using Promega reverse 
transcriptase according to the manufacturer’s instructions. cDNA 
was then quantified via quantitative polymerase chain reaction 
(qPCR) using TaqMan Gene Expression Assays. Results were 
calculated using the delta-delta cycle threshold (ct) method using 
human actin as control. The following catalog numbers were used 
for the TaqMan assay.  

Gene			  Thermo-Fisher Scientific Cat#

CYP27B1 		  4351372
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VDR 			   4331182

ADCYAP1R1 	               4331182

ARHGAP6 		  4331182

NOS1			  4331182

SIRT6			   4331182

TYR			   4331182

ACTB 			   433118

Bioinformatics: EntroSolve (EntroSolve.com) was consulted 
for bioinformatics analysis. All bioinformatics computations 
were conducted in R statistical environment version 3.2.4. Gene 
ontology (GO) was conducted by downloading gene ontology 
information from BioMart and using text-mining algorithms 
included in the basic R package to identify proteins that are known 
to contribute to a subcellular process. Promoter sequences were 
obtained by querying BioMart for respective transcription start 
sites. The BSgenome.Hsapiens.UCSC.hg38 R package was then 
queried for promoter sequences to obtain DNA ranges +/- 2,000 
base pairs from transcription start site. Pathway analysis was 
performed on the database that included putative VDR promoters 
using Gaggle software (http://gaggle.systemsbiology.net/docs/), 
String version 10 (http://string-db.org/), and Cytoscape (http://
cytoscape.org/)

Statistical analysis: qPCR data are expressed as means ± 
SEM of at least three independent experiments. Comparisons of 
mean values between two groups were evaluated using a two-

tailed Student’s T-test or Mann-Whitney U-test. Unless otherwise 
indicated, p values < 0.05 were considered statistically significant.  

RESULTS AND DISCUSSION

Differential gene expression under HBOT

To investigate initiating transcriptome events that occur 
in response to increased ROS signaling, we subjected human 
umbilical cord endothelial cells (HUVECs) to HBOT at 100% FiO2 
and 2 atm for 30 minutes. Following treatment, we conducted 
RNA-sequencing analysis then computed fold change values 
and significance levels of individual genes. Application of Bland-
Altman was used to display expression analysis as an MA plot 
(Figure 1A). Following which, we determined the number of 
genes that have a p-value or False Discovery Rate (FDR) that 
meet a threshold cutoff of less than 0.05 (Figure 1B).  Taking into 
account fold change levels in addition to the FDR, we categorized 
genes based on whether they had a fold change value less than 
2.5 and an FDR greater than 0.05, a fold change greater than 2.5 
and an FDR greater than 0.05, a fold change less than 2.5 and an 
FDR less than 0.05, or a fold change greater than 2.5 and an FDR 
less than 0.05, as represented by the Volcano Plot in (Figure 1C).  
Approximately 7,453 genes were identified to be significantly 
differentially expressed by at least a2.5 relative fold change 
under HBOT (Figure 1D).

Subset of ROS genes regulated by HBOT and their 
putative transcription factors. 

Based on the importance of ROS signaling to HBOT-mediated 

Figure 1 (A) MA plot illustrating RNA expression profile from HUVECs treated with 2 atm HBOT for 30 minutes.  (B) Volcano plot representing RNA 
expression profiles from HUVECs treated with HBOT at 2 atm for 30 minutes. (C) Bar plot illustrating number of genes represented in specified 
significance range.  (D) Bar plot illustrating the number of genes represented that have a specified fold change or FDR cutoff.   

http://gaggle.systemsbiology.net/docs/
http://string-db.org/
http://cytoscape.org/
http://cytoscape.org/
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cellular response, we further classified genes that have a fold 
change greater than 2.5 and an FDR less than 0.05 based on 
their known functions in response to ROS-mediated signaling 
as annotated by Gene Ontology (GO) (http://geneontology.
org). From this representative list, we identified 51 genes of 
interest (Figure 2A).  Their relative expressions compared to 
control are listed in (Figure 2B). Next, we investigated putative 
transcription factors that may contribute to gene regulation of 
the 51 identified genes. We generated a function in R-statistical 
environment that utilizes consensus sequences scripted from the 
Motifmap database (http://motifmap.ics.uci.edu) to return the 
transcription factor consensus sequences that are present in a 
given DNA sequence.  We then downloaded the DNA sequences 
+/-2,000 base pairs from the transcriptional start sites (TSS) of 
the 51 identified genes and determined the number of promoters 
containing a consensus sequence for each transcription factor 
in each of the 51 promoters (Figure 3A). We identified VDR 
to further investigate due to its implication in vitamin D and 
angiogenic signaling. We found the specific VDR DNA recognition 
sequence (Figure 3B) in 47 of the HBOT-induced ROS regulated 
promoters (Figure 3C). To gain insight into pathways that may be 
regulated by the VDR under HBOT-induced ROS, we queried the 
String database for 50 known and/or predicted genes associated 
with the 47 predicted VDR regulated genes and integrated 
these data into Gaggle and Cytoscape. Major nodes identified 
from the large database were pulled out and enlarged to allow 
visualization, which are depicted with a diamond shape (Figure 
4B): adenylate cyclase activating polypeptide 1 (pituitary) 
receptor type I (ADCYAP1R1 or PAC1R), rho GTPase activating 
protein 6 (ARHGAP6 or RHOGAP6), nitric oxide synthase 1 (NOS1 

or nNOS), sirtuin-6 (SIRT-6), and tyrosinase(TYR).  These genes 
were revalidated using qPCR on RNA isolated from HBOT treated 
cell lysates along with cytochrome P450 family 27 subfamily B 
member 1 (CYP27B1) and the VDR due to their roles in vitamin 
D regulated pathways (Figure 4B).The role of CYP27B1,VDR 
and their predicted downstream targets in ROS-mediated 
angiogenesis.

CYP27B1also known as 25-Hydroxyvitamin D3 1-alpha-
hydroxylase (VD3 1A hydroxylase) synthesizes the nuclear 
hormone 1alpha, 25-dihydroxyvitamin D3(1α,25(OH)2D3), the 
active form of vitamin D3, which binds to the VDR [23]. Recent 
studies have attributed 1α,25(OH)2D3 necessary to angiogenic 
signaling, especially in developing tissue [24]. CYP27B1 up 
regulation in HBOT may be an initiating factor in VDR regulation 
of ROS-dependent pro-angiogenic genes.

VDR is a ligand inducible nuclear transcription factor that 
binds 1α,25(OH)2D3 with high affinity. VDR targets many genes 
involved in cellular metabolism, bone formation, cellular growth 
and differentiation, and inflammatory response [25]. Significant 
to this study, current evidence suggests VDR signaling is vital to 
the modulation of angiogenesis as both endothelial cells (EC) and 
smooth muscle cell (SMC) are highly responsive to  1α,25(OH)2D3 
[26]. Under pathogenic conditions, such as cancer, 1α,25(OH)2D3 
is thought to play an anti-angiogenic role [27]. However, under 
normal physiological conditions or controlled induction of 
transient ROS, as occurs with HBOT, 1α,25(OH)2D3 is also involved 
in the promotion of angiogenesis [26]. For example, in ECs and 
SMCs, vitamin D improves eNOS expression and coupling to 
increase NO production while controlling ROS [28]. eNOS and NO 

Figure 2 Raw expression levels (A) or fold change levels with associated FDR (B) of mRNA from HUVECs treated with HBOT at 2 atm for 30 minutes. 
Genes illustrated were selected due to their implications in ROS signaling.

http://geneontology.org
http://geneontology.org
http://motifmap.ics.uci.edu
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Figure 3 (A) Promoter sequences of the selected ROS genes were queried for the presence of transcription factor binding sites.  The plot illustrated 
represents the number of promoters that contain at least one transcription factor consensus sequence.  (B) Consensus sequence logo of the VDR 
transcription factor from the Motifmap database. (C) Number of times the VDR consensus sequence appears in the promoters of the selected genes. 

Figure 4 Cytoscape display of predicted VDR regulated, HBOT-induced ROS responsive genes.  Central nodes are depicted as diamond shapes. 
Colors of lines indicate first order association congruent with each central node: light blue -ADCYAP1R1, dark blue – ARHGAP6, white – NOS1, 
orange – SIRT6, beige – TYR. First order-associated proteins are depicted in gray. Excluding central nodes, proteins with more than five associations 
are depicted in green (first order) and yellow (second order).(D) qPCR data representing fold change under HBOT compared to control, which was 
set at 1.  All fold changes are significant with p > 0.05 and N = 4.
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are well known for their role in angiogenesis. VDR signaling also 
promotes an angiogenic influence on endothelial progenitor cells 
(EPCs) through VEGF and matrix metalloproteinase 2 (MMP-2) 
regulation [29]. HBOT regulated VDR expression (Figure 4B) may 
prime a pro-angiogenic network of genes. As presented in (Figure 
3C), the following HBOT regulated genes contain the VDR binding 
sequence within the promoters indicating their potential for VDR 
regulation.

ADCYAP1R1 (or PAC1R) is a membrane-associated 
receptor that mediates diverse biological actions of adenylate 
cyclase activating polypeptide 1 (PACAP). PACAP promotes 
pro-angiogenic effects and factors, such as EC proliferation 
and VEGF, respectively, both in vivo and in vitro [30]; while 
dysregulation of PAC1R-PACAP signaling impairs angiogenic 
responses in ECs [31]. PAC1R-PACAP signaling is activated by 
ROS, yet serves a regulatory role against hyper-physiological 
levels of ROS by increasing glutathione formation and reducing 
H2O2 ROS accumulation. This provides a protective effect against 
ROS-induced mitochondrial dysfunction, caspase 3 activation 
and stress-induced apoptosis [32]. PACAP further inhibits 
apoptosis by limiting 1α,25(OH)2D3dependent NF-κB ligand 
(RANKL) [33] anti-angiogenic influence [34] and by encouraging 
phosphorylation of anti-apoptotic ERK [35]. Therefore, HBOT 
transactivated PAC1R may serve to enhance angiogenesis by 
modulating ROS signaling toward necessary EC proliferation and 
differentiation as opposed to ROS-induced apoptosis. 

ARHGAP6 (or RHOGAP6) is a cytoskeletal protein that 
activates RhoAGTPase to promote actin polymerization and 
remodeling [36]. Rho GTPases are constituents of activated NOX 
complexes and therefore participate in the generation of ROS (O2

-

) from O2 [37]. Specifically, RhoA initiates the phosphorylation of 
the NOX subunit p47phox, through the Rho-associated coiled-coil 
containing protein kinase 1 (ROCK)-p38MAPK pathway [38]. The 
RhoA-ROCK pathways are key to the process of angiogenesis at 
each step, which includes basement membrane permeability, 
EC proliferation and migration, cellular morphogenesis that 
leads to tube formation, recruitment of pericytes and vascular 
smooth muscle cells (VSMCs) necessary for vascular support 
[39]. Furthermore, RHOGAP6 and VDR induce phospholipase 
C (PLC) and enhance its activity [40,41] which has been shown 
to be important for vascular organization and stability during 
angiogenesis [42]. RHOGAP6 likely supports HBOT-induced 
angiogenic processes by modulation of ROS activation of both 
RhoA-ROCK and VDR pathways.

NOS1 (or nNos) synthesizes NO from L-arginine. nNOS is co-
expressed with the endothelial eNOS (NOS3) in ECs, suggesting 
a possible role for nNOS endothelial function [44]. However, it 
has been shown to be predominately located in the nucleus 
while contributing to the basal level of NO production in ECs 
[45]. ROS signaling upregulates NOS expression, in part, through 
activation of NF-κB [46] but largely through 1α,25(OH)2D3, acting 
as a direct transcriptional regulator of all NO synthases [47]. 
Both nNOS and eNOS positively influence the transactivation of 
VEGF and angiogenesis [48]. Importantly, NO is necessary for 
revascularization of infarcted tissue [49]. nNOS-catalysis of NO 
production is more sensitive to ambient O2concentration than 
eNOS, potentially revealing a significant role in HBOT-induced 
angiogenesis [50].

SIRT-6 is a histone deacetylase and an ADP-ribosyltransferase. 
SIRT-6 is activated under oxidative stress to ADP-ribosylate and 
activates poly ADP-ribose polymerase 1 (PARP-1) in DNA repair 
[51]. PARP-1 activation is a required component of signaling 
pathways involved in EC proliferation and angiogenesis [52]. Sirt-
6 also potentially activates transient receptor potential cation 
channel subfamily M member 2 (TRPM2) by increasing ADP-
ribose [53]. Activation of TRPM2 increases nuclear Ca2+ responses 
to regulate nuclear factor of activated T cells (NFAT), which 
transactivates angiopoietin-2 (ANG-2) [54], a key regulator in 
angiogenesis [55,56]. Notably, VEGF-induced ROS also activates 
TRPM2, which forms a complex with vascular endothelial (VE)-
cadherin to secure EC junctions [57] exemplifying VE-cadherin’s 
role in angiogenesis and neovascularization in ischemic tissue 
[58]. The SIRTs, including SIRT-6, are implicated in chromatin 
remodeling as histone deacetylases that transactivate VDR [59] to 
instigate angiogenesis and protect tissue damage in the presence 
of elevated H2O2 [50-62]. SIRT-6 likely plays a multifaceted 
role in HBOT-induced ROS responsive angiogenesis at both the 
transcriptional and cellular signaling levels. 

TYR is a tyrosine hydroxylase and a dopa oxidase that 
catalyzes at least 3 steps in the pathway that converts tyrosine to 
melanin. TYR positively influences vascular regeneration and EPC 
recruitment after exposure to O2 [63], potentially by catalyzing 
the oxidation of catecholamines. Interestingly, the intermediate 
products of tyrosine to melanin conversion differentially regulate 
angiogenesis relative to the degree of pigmentation of tissue 
(higher pigmentation correlates to reduced angiogenic response). 
For example, dopamine is predominately anti-angiogenic; 
whereas, norepinephrine and epinephrine are pro-angiogenic in 
ischemic tissue [64].  Furthermore, TYR activity increases ROS 
stimulating VEGF expression, proliferation and migration in ECs 
[65,66]. In regards to vitamin D, it has been shown to increase 
tyrosine levels in melanocytes and may have similar effects in 
ECs [67].  HBOT transactivation of TYR may indeed facilitate 
angiogenesis by providing optimal O2 supply for pro-angiogenic 
intermediate production in tyrosine to melanin conversion. 

CONCLUSION
In this study, we report that HBOT up regulates 51 novel ROS 

responsive genes identified through high-through put screening 
and bioinformatics. We also identified the 1α,25(OH)2D3/VDR 
pathway as a potential transcriptional regulator of 47 of these 
genes via a VDR consensus DNA binding domain located in 
their promoter. Specifically, we validated HBOT upregulation of 
CYP27B1, VDR, ADCYAP1R1, ARHGAP6, NOS1, SIRT6, and TYR 
using qPCR. These data support further investigation of molecular 
mechanisms and phenotypic outcomes of HBOT – ROS induced 
regulation of VDR and its downstream cascade in angiogenesis. 
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