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Abstract

Early diagnosis and monitoring of treatment are essential for the efficient 
management of patients. In this regard, significant efforts have been made to find 
informative, blood (and other biological fluids) -based biomarkers. Thanks to their 
innate characteristics, microRNAs (miRNAs) hold the promise of being ideal biomarker 
molecules for healthcare needs and in cancer in particular. Consequently, the number of 
studies exploring such exciting possibility has multiplied exponentially in the last couple 
of years. However, the caveat is that this field is still very much in its infancy, and special 
attention must be paid to the technological aspects involved in miRNA handling and 
detection, if miRNAs are to fully realize their potential. In this mini review, we outline 
the clear possibilities of the circulating miRNome as a source of clinically-relevant 
biomarkers, describe the challenges faced by this research area, and offer suggestions 
of best practice in order to facilitate the translation of laboratory studies to the clinic 
in the not too distant future.

ABBREVIATIONS
miRNAs: Micro RNA; ncRNA: Non-Coding (Nc) RNA; FFPE: 

Formalin-Fixed Paraffin-Embedded; qRT-PCR: Real Time 
Quantitative PCR; NGS: Next Generation Sequencing; PBMC: 
Peripheral Blood Mononuclear Cell; rRNA: Ribosomic RNA; 
snoRNA: Small Nucleolar RNA; dPCR: Digital PCR

INTRODUCTION
MicroRNAs (miRNA) are a class of naturally occurring short 

non-coding (nc) RNA molecules that regulate eukaryotic gene 
expression post-transcriptionally. There are over 2500 human 
microRNAs that have been identified [1,2], and it is believed that 
more than well over half of all human genes are directly regulated 
by miRNA [3]. MiRNAs have been shown to play key regulatory 
roles in nearly every physiological and pathological aspect of 
biology [4], and there is now vast evidence that dysfunctional 
expression of miRNAs is a omnipresent feature of many different 
pathological processes, including cancer [5-7], metabolic 
disorders [8,9], inflammatory [10,11], cardiovascular [12,13], 
neuro developmental [14] and autoimmune [15,16] disease, to 
name but a few. As a consequence there is great interest in the 
potential clinical use of miRNAs.

The greatest and undoubtedly most immediate clinical 
potential of miRNAs is them being used as biomarkers. The 
National Cancer Institute defines a biomarker as “a biological 
molecule found in blood, other body fluids or tissues that is a sign 
of a normal or abnormal process or of a condition or disease”. For 
example, cancer biomarkers qualify as “diagnostic” when they 
are useful for differential diagnosis, “prognostic” when they help 
distinguishing between good outcome tumours and bad outcome 
tumours in the absence of treatment, and “predictive” when they 
hold the potential of assessing the probability that a patient will 
benefit from a particular treatment. Indeed, mounting evidence is 
being produced on the likely usefulness of miRNAs as biomarkers 
of various diseases [17-24].

The perfect clinically useful biomarker has high specificity, 
sensitivity and predictive power. MiRNAs do have a number 
of characteristics that make them attractive candidates as 
biomarkers when compared to other classes of molecular 
biomarkers, not least of all their remarkable stability. This feature 
means that miRNAs not only can be purified from routinely 
prepared formalin-fixed paraffin-embedded (FFPE) material [5], 
but that they can also be detected in biological fluids [25]. The 
vast majority of other RNA classes are degraded by high levels of 
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RNases present in the blood [26]; however, miRNAs seem to be 
stable in the blood and are incredibly resistant to fragmentation 
by either enzymatic or chemical agents [27]. Several studies have 
used sonication, proteases and detergents to shed light on the 
mechanism by which miRNAs are resistant to RNase degradation. 
According to these studies, this stability comes not as a result of 
chemical modification, but rather because they are protected 
by their lipid or protein carrier [27-29]. Therefore, miRNA are 
some of the best candidates to be used as biomarkers, especially 
in liquid biopsies, which is an increasingly attractive method for 
sampling patients due to its minimally invasive nature. This great 
promise faces several challenges: the lack of reproducibility of 
some results suggests that fulfilling this promise remains a work 
in progress. Below we discuss some of these issues in more detail.

CHALLENGES, OPPORTUNITIES, AND RECOM-
MENDATIONS

The circulating miRNome biomarker research field has seen 
a rapid growth over a very short time (<10 years). However, 
much of this data associated with particular miRNAs appear to be 
non-specific, as the same species have been reported in multiple 
conditions and outcomes. More worryingly, there are great 
many non-overlapping and even contradictory reports in the 
literature. The reason for these differences are complex, however 
the primary cause is biological and technical variation between 
studies such as the starting material used in experiments (e.g. 
purification of cells, cell types, control populations used, RNA 
extraction, etc.), technological platforms (e.g. microarray, real 
time quantitative PCR (qRT-PCR), next generation sequencing 
(NGS), etc.), and differing statistical methodologies used. Indeed, 
the majority of reports regard single-centre retrospective 
studies using small cohorts, and the standardization of sampling 
and processing protocols, RNA extraction methods, profiling 
platforms, and analysis are yet missing.

Sample choice

Although obvious, the choice of starting material is a crucial 
part of initial experimental design, and the choice of whole 
blood, peripheral blood mononuclear cells (PBMCs), serum, 
plasma or purified exosomes from the same individual will 
generate very different expression profiles [30-32]. Additionally, 
a systematic investigation into plasma processing conditions 
showed that processing differences result in variation in platelet 
contamination in plasma and subsequent significant differences 
in miRNA abundance [33]. Also, if plasma is the chosen starting 
material, it should be born in mind that the tubes used for plasma 
collection contain anticoagulants, including EDTA, heparin or 
sodium citrate that may interfere in the following downstream 
applications such as RT-qPCR [34]. Table (1) summarizes the 
advantages and limitations of measuring miRNA in the most 
commonly used biological fluids for biomarker discovery.

The blood collection procedure itself is also critical. All of 
the circulating cell types in blood have their own unique miRNA 
profiles and given the low concentration of miRNAs in plasma or 
serum, RNA from a small number of lysed cells can represent a 
disproportionately large proportion of the miRNAs detected. 
Cellular miRNA contamination due to lysis can vary from sample 
to sample if the blood is not collected and processed promptly 

Table 1: Summary of advantages and limitations of measuring miRNA 
in the most commonly used biological fluids for biomarker discovery 
(modified from [18]).

Plasma Serum Urine

Accesibility Minimally 
invasive

Minimally 
invasive Non-invasive

miRNA
stability

Stable under 
harsh

conditions 
including

boiling, low/high 
pH,

extended storage 
and

multiple freeze-
thaw

cycles [27,66]

Stable under 
harsh

conditions 
including

boiling, low/high 
pH,

extended storage 
and

multiple freeze-
thaw

cycles [28,67]

Stable under 
multiple

freeze-thaw cycles
[68]

Total RNA
quantity

10-300 ng/mL 
[43]

10-300 ng/mL
Conflicting 

reports:
some report 

lower
RNA yield than

plasma [30], 
whereas

others report 
similar

yield [69]

1-100 ng/mL 
[43,70]

miRNA levels miRNA levels
strongly correlate strongly correlate
between plasma 

and
between plasma 

and
serum [27] serum [27]

PCR inhibi-
tors

Anticoagulants:
heparin, citrate

Interfer-
ences with 
extraction

High protein
abundance

High protein
abundance

Cellular
contamina-

tion

Haemolysis (con-
trol: miR-23a and 

miR-451)
Blood cells not

separated prop-
erly,

Cell debris, ap-
optotic

bodies, blood 
platelets

Frequent [37]

Haemolysis (con-
trol: miR-23a and 

miR-451)
Cell debris, apop-

totic
bodies, blood 

platelets

Urethral cells, cell
debris

Abbreviations: RNA; Ribonucleic Acid; RIN: RNA Integrity Number

and carefully, and confound downstream data analysis [35-
37]. Therefore, the elapsed time between blood collection and 
processing should be reduced to prevent lysis and subsequent 
miRNA contamination [35-39]. Also, it is important to discard 
the first several ml of blood to prevent contamination from the 
puncture site [40].

Alternatively, for the study of specific diseases it might be 
worth considering as starting material body fluids others than 
blood. Local sampling might be advantageous, before the miRNAs 
of interest are diluted in the bloodstream or other spaces. For 
example, levels of 4 miRNAs in the bile have successfully been 
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used to predict acute cellular rejection after liver transplantation 
[41]; also, miRNA profiling of knee synovial fluid was useful to 
distinguish early-stage and late-stage knee osteoarthritis patients 
[42]. Similarly, miRNAs have been detected in other body fluids 
like saliva, urine, breast milk, cerebrospinal fluid, tears, and 
vitreous and aqueous humors of the eye, to name a few [18,43].

RNA extraction

Another important source of variability comes from the 
choice of RNA purification procedure. Importantly, small RNA 
molecules with low GC content are known to be selectively 
lost during phenol-based extraction methods (being TRIzol®/
TRI Reagent® the most popular protocols used) when present 
in low concentrations such as in biological fluids [44]. For that 
reason, specific commercial kits have been developed for RNA 
isolation from biological fluids and are widely used. However, 
most commercially available RNA isolation kits will not capture 
small RNAs (< 200 nucleotides); fortunately, some companies 
have developed kits that have been specifically optimized for the 
isolation of small RNAs species, included in the 10-200 nucleotide 
range (including miRNAs, 5S rRNA, and U1 snoRNA).

In addition, biological fluids typically contain very high levels 
of salts, lipids and proteins that can inhibit enzymes used to 
detect RNA. Many protocols use non-human miRNAs (such as 
Caenorhabditis elegans) miRNAs added to plasma as a spike-in 
to control for this (and extraction) variability [27]. An additional 
issue is that it is often impossible to accurately measure RNA in 
samples from biological fluids and therefore studies frequently 
use fixed volumes of plasma as a standardization method, 
assuming that they include samples with certainly different RNA 
levels [45].

Detection method

Many methods are routinely employed to measure 
extracellular miRNAs including qRT-PCR (LNA-based, TaqMan 
or other proprietary technologies), microarrays, next generation 
sequencing (NGS) techniques, and more recently, digital PCR 
(dPCR). It is beyond the scope of this mini review to recapitulate 
the specifics and technical challenges of each of these techniques 
in detail, which have been substantially covered in other reviews 
[46,47]. A summary of the features of each these methods is 
outlined in Table (2). For example, the technique of choice for 
circulating miRNA discovery is NGS, but the amount of starting 
material, and the highly specialized personnel and computational 
infrastructure that it requires for data analysis might make it 
unfeasible for specific studies. Microarrays could therefore be 
an attractive alternative for exploring the biomarker potential 
of known miRNAs, and are widely used, and usually their results 
have subsequently been validated by qRT-PCR. However, the 
difficulty in choosing a sound reference gene makes it difficult to 
robustly interpret the data, as discussed below.

As illustrated, each technique has advantages and 
disadvantages depending upon the experimental design and 
resources. What is clear, however, is that the choice of platform 
greatly influences the end result and a number of reports have 
shown disparate results from the same sample source using 
different platforms (e.g. [48,49]).

Normalization strategy

As mentioned above, a challenging issue is the lack of a suitable 
endogenous reference miRNA or normalization strategy when 
studying the circulating miRNome in biological fluids. Although 
global mean normalization is probably the most accurate method 
for normalization when considering profiling studies, the low 
number of miRNA species (typically < 100) present in biological 
fluids makes it unsuitable [50]. Furthermore, even the widely 
used U6 or U48 in cell-based studies as internal controls, are 
not present at detectable levels in biological fluids [51-53], and 
also are known to degrade during storage [54,55]. Alternatively, 
individual miRNAs are often used such as miR-16, miR-24 and 
miR-425 [25,27,56]; however expression levels of these miRNAs 
can vary significantly amongst samples depending upon the 
pathology that is studied [57-59]. An alternative is to use 
external controls such as miRNAs from C. elegans to normalize 
[27,35,60,61].

In our view, the least variable miRNAs determined empirically 
for each experiment (using geNorm and/or NormFinder 
algorithms), an approach taken by some studies [56,59], should 
be used as normalizer. We understand that this is not always 
possible when sample volumes are limited. If that is the case, at 
least two (or preferably three) RNA endogenous controls should 
be used as standard in circulating transcriptome studies.

CONCLUSION AND FUTURE PERSPECTIVES
In the personalized medicine era we need the tools to be able 

to efficiently separate patients into different groups, with medical 
decisions, practices, interventions and/or products being tailored 
to the individual patient based on their predicted response or 
risk of disease. In this scenario, biomarkers are needed to make 
the right decisions at the right time. Liquid biopsies minimize 
the costs and risks of sampling patients, and allow screening and 
repeated sampling on patients undergoing therapy. MiRNA are 
among the best analytes with biomarker potential, mainly due to 
their stability. Overwhelming evidence points to their potential 
usefulness as biomarkers in liquid biopsy, but a sustained and 
systematic effort of the research community for standardizing 
protocols and reporting of data is still needed to fulfill the 
biomarker promise of miRNA. Hopefully, the rapid development 
of technology for detecting miRNA and the reduction of its costs 
will allow a flourishing of circulating miRNA studies, bringing the 
field closer to the clinic.

Far from being just a dream, deregulated miRNA are already an 
attractive target for the development of new therapeutic options in 
several diseases, and several pharmaceutical companies already 
have miRNA therapeutics in their developmental pipelines 
[62]. Moreover, some of them have entered early phase clinical 
trials, including Miravirsen (SPC3649, Santaris Pharma A/S) for 
treatment of hepatitis C virus (HCV) infection (NCT01872936, 
NCT02031133, NCT02508090) [63], miR-16 mimics for 
treatment of patients with malignant pleural mesothelioma or 
non-small cell lung cancer (NCT02369198) [64,65], and miR-34 
mimics (MRX34, Mirna Therapeutics) for the treatment of several 
cancer types (NCT01829971). These promising studies highlight 
the clinical potential of miRNA beyond their biomarker value.
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