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Abstract

Micro-RNAs (miRNAs) are endogenous, evolutionarily conserved, non-coding, 
RNAs of about 20-25 nucleotides in length. They control cell fate via cell proliferation, 
differentiation, apoptosis and stress response. They regulate gene expression by 
primarily disrupting mRNA translation and stability, or by modulating the transcription 
of target messenger RNAs. The expression of miRNA has been shown to be de-
regulated in various human diseases, thus making them novel diagnostic biomarkers 
and therapeutic targets. It is challenging to target miRNAs with small molecules; 
different groups have identified small molecule modulators of miRNA by targeting 
various pathways. In the present review, we discuss about the role of micro-RNAs in 
cancer, and strategies for modulating their expression, which can be used to achieve 
therapeutic outcomes.

INTRODUCTION
MiRNAs are short, non-coding RNAs that regulate gene 

expression at post-transcriptional level [1-3]. They originate 
via transcription of a miRNA gene by RNA polymerase II. 
Subsequently they undergo a dual processing step, where an 
initial nascent transcript folds over itself, forming a secondary 
hairpin structure, called long primary miRNA (pri-miRNA) [4]. 
This is then cleaved by the RNase endonuclease III, Drosha, 
along with a microprocessor part, DGCR8, forming a precursor 
sequence, called pre-miRNA, of about 70 nucleotides in length [5-
7]. The pre-miRNA is transported to the cytoplasm via Exportin 
5 and RanGTP [8,9]. A double stranded RNA-specific cytoplasmic 
nuclease, called Dicer causes a cleavage to form a 22 nucleotide-
long double stranded RNA transcript (dsRNA), following which, 
the guide strand, involving the RNA-induced silencing complex 
(RISC) targets the 3′-untranslated region (UTR) of messenger 
RNAs [10]. The final result is decrease in target protein levels. 

Imbalance in the levels of miRNA can destabilize the entire 
cellular machinery, as a single miRNA can regulate hundreds 
of mRNA at the same time. Many genes can be regulated 
simultaneously as their nucleotide pairing with miRNAs is 
imperfect [11]. In case of human cancer, these genes are 
responsible for various cancer associated pathways, such as 
tumor initiation, development, invasion and metastasis. Owing 
to their aberrant expression, modulation of miRNA levels is 
of therapeutic potential. miRNAs can be divided into two main 

groups based on their expression levels: tumor suppressive 
miRNAs (ts-miRNAs) and oncomiRs. Ts-miRNAs are down 
regulated and target tumors suppressor genes and oncomiRs 
have increased expression, targeting oncogenes (Figure 1).

In addition to their traditional roles, miRNAs also cause 
an increase in translation during various cellular processes. 
For example, human microRNA, miR-369-3 is involved in the 
association of argonaute (AGO) and fragile X mental retardation-
related protein 1(FXR1), [proteins which are associated with 
micro-ribonucleoproteins (microRNPs)] with AREs (AU-rich 
elements) to activate translation. Additionally, microRNAs 
Let-7 and synthetic microRNA miRcxcr4 induce translation 
upregulation of target mRNA upon cell cycle arrest; however they 
repress translation in proliferating cells [12]. miR-15b represses 
WEE1 (a key mammalian cell cycle regulator) protein during 
G1 and S phase. Regulatory factors such as CPEB1 (cytoplasmic 
polyadenylation element-binding protein) also bind to mRNA 
3´UTR during post transcriptional repression. Intriguingly, both 
factors lose their inhibitory activity at G2/M transition, when 
WEE1 expression is maximal and activate WEE1 translation in a 
synergistic manner [13]. Another miRNA, miR-276 is involved in 
the upregulation of transcription coactivator gene (brm), through 
a process that depends on secondary structure of brm, involving 
a stem-loop around the binding site of miR-276 [14]. miR-328 
upregulates CEBPA (CCAAT-enhancer binding protein alpha) 
by releasing it from heterogenous ribonucleo protein mediated 
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translation inhibition [15]. miR-373 induces transcription of 
E-cadherin by targeting promoter sequences [16]. It has also 
been reported that nuclear entry of miRNAs are necessary 
for upregulation of genes in some cases [17]. miRNA was also 
found to function endogenously, activating Cyclin B1 (Ccnb1) 
expression in mouse cells, thus manipulating in vivo tumor 
development and growth. Three more miRNAs were found, miR-
744, miR-1186 and miR-466d-3p that induce Ccnb1 expression 
in mouse cell lines [18].

MicroRNAs in cancer

Cancer is a complex disease involving changes in gene 
expression. In recent years there has been tremendous interest 
in investigating the role of miRNAs in cancer. miRNA expression 
profiling has been extensively studied and taken into cancer 
clinics, to be used as a diagnostic and prognostic biomarker, in 
order to monitor tumor initiation, progression and response to 
treatment [19]. The roles played by miRNAs have been reported 
in different types of cancers, such as breast, colon, gastric, lung, 
prostate and thyroid cancers [20-24]. The role of miRNA in cancer 
has been extensively studied, as evidenced by peer-reviewed 
scientific literature covering nearly 23,467 hits on Pubmed, as of 
November 2016.

miRNAs have either oncogenic or tumor suppressor function 
and their expression is globally suppressed in tumor cells, 
compared to normal tissues. miRNA dysregulation in cancer was 
first reported in CLL (chronic lymphocytic leukemia) in 2002. A 
cluster of two miRNAs, namely miR-15 and miR-16 were identified 
at 13q14.3 chromosomal region, which is frequently deleted. This 
deletion was partly responsible for higher expression of miR-

15/16 anti-apoptotic target, B cell lymphoma 2 (BCL2). miRNAs 
can act as tumor suppressors, such as let-7 family of miRNAs 
that target critical oncogenes like RAS family members (HRAS, 
KRAS and NRAS) and MYC. The differential pattern of miRNA 
expression in cancer allows their use as diagnostic markers, 
which correlates with disease progression.

 Another miRNA, miR-34 consists of a family of three 
miRs, namely miR-34a, miR-34b, and miR-34c, which have 
presumably tissue-specific functions, even though they are 
direct transcriptional targets of the onco-suppressor p53, whose 
expression is greatly affected by DNA damage and oncogenic stress. 
Thus miR-34 family contributes to arrest of cell proliferation and 
induction of apoptosis, by targeting c-MYC, CDK6 and c-MET [25]. 
Di Martino et al., have reported the molecular effects induced 
by enforced expression of miR-34a on multiple myeloma (MM) 
cells, showing time-dependent modulation of several signalling 
pathways, controlling cell proliferation and apoptosis. This 
is the first group to have reported the role of miR-34a in the 
pathogenesis of MM, through its downregulation in a wide series 
of MM samples [26,27]. The most affected pathway was the Erk/
Akt dependent pathway [27]. The researchers showed that miR-
34a induces sequential down modulation of both Erk and Akt 
activity, followed by pro-caspase-6 and -3 cleavage and apoptosis 
induction in MM cells. Previously, the same scientists have also 
shown the potential of miR-34a treatment in downregulation of 
Bcl-2 and NOTCH1, and in induction of apoptosis, both in vitro 
and in a xenograft mouse model [26]. Di Martino et al., tested 
the efficiency of stable nucleic acid lipid particles (SNALPs) in 
delivering miR-34a in vivo [27]. SNALPs have high serum stability 
and are an attractive option to translate miR based therapies in 

Figure 1 The miRNA processing pathway involves the production of pri-miRNA by RNA polymerase II. This is followed by cleavage by Drosha-
DGCR8, to form pre-miRNA. Then the pre-miRNA is transported to cytoplasm by Exportin 5 and RanGTP and cleaved by Dicer to form a double 
stranded RNA transcript. The functional strand is loaded onto the RNA Induced Silencing Complex (RISC), thus guiding RISC to silence target mRNAs 
through mRNA cleavage, translational repression or deadenylation, whereas the passenger strand is degraded.
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the clinic. According to these findings, a liposome-carried form of 
miR-34a is under investigation in Phase I clinical trial in patients 
affected by several malignancies, including MM (clinicaltrials.
gov: A multicenter phase I study of MRX34, miRNA miR-RX34 
liposomal injection NCT01829971). Other recent studies explore 
the blocking of Bcl-2 by vaccinia virus-miR-34a, which increases 
release of cytochrome C from mitochondria and synergistically 
amplifies the antitumor effects of Smac-induced cell apoptosis. 
This is the first study to utilize oncolytic vaccinia virus as vector 
for miR-34a or Smac expression for treating MM, and lays 
groundwork for future clinical therapy [28]. Finally, miR-34a 
has also been associated with regulation of cancer stem cells 
function in various cancer types, including prostate cancer [29], 
pancreatic cancer [30], breast cancer [31], and glioblastoma [32].

miRNAs can also function as oncogenes. An oncogenic cluster 
of miRNAs, the polycistron, miR-17-92, comprising of a cluster 
of seven miRNAs: miR-17-5p, miR-17-3p, miR18a, miR-19a, miR-
19b-1, miR-20, and miR-92-1, was found to be overexpressed 
in many lymphoma samples compared to normal tissues [33]. 
miR-21 was found to be strongly overexpressed in highly 
malignant glioblastoma tumor tissues [34]. A knockdown of miR-
21 in cultured glioblastoma cells activated caspases and led to 
cell death via an apoptotic pathway. Further, a comprehensive 
analysis of miR-21 in solid tumors showed overexpression, that is 
common to six types of cancer that were studied, namely breast, 
colon, lung, pancreas, prostate, and stomach [35]. 

Other studies have shown the aberrant expression of miRNAs 
in brain tumors. The analysis of 245 miRNAs in glioblastoma 
multiforme showed that miR-221 was highly upregulated. 
Reports showed that miR-221 and miR-222 are highly expressed 
in glioblastoma and directly target p27Kip1, a negative regulator 
of the cell cycle [36]. miRNAs 221/222 are of interest as they 
are strongly upregulated in a variety of solid and hematologic 
malignancies. In case of Breast Cancer (BC) miR-221 mainly 
supports tumor growth and progression. In basal-like BC, miR-
221/222 is highly expressed and promotes S-phase entry, cell 
migration and invasion through the inhibition of suppressor 
of cytokine signaling 1 (SOCS1) and cyclin-dependent kinase 
inhibitor 1B (CDKN1B) [37]. Upregulation of miR-221/222 is 
also relevant in triple negative BC, via cell cycle regulation and 
inhibition of apoptosis [38]. These data suggest that targeting 
miR-221 may be of value for the therapy of BC. Tanaka R et al. 
[39], have recently shown that Metformin, an anti-diabetic drug 
causes G1 phase arrest by downregulating miR-221, followed by 
rescue of p27 checkpoint and enhancement of TRAIL sensitivity 
through DR5 upregulation in pancreatic cancer cells. In case of 
transgenic mice, liver tumors ranging from typical adenomas 
to HCC (hepatocellular carcinomas) - like lesions, develop with 
selective upregulation of miR-221. In these tumors, targets of 
miR-221 such as cell cycle inhibitors, p27, p57 and pro-apoptotic 
proteins were found to be downregulated. When transgenic 
mice were intravenously treated with 2´-O-methyl modified 
oligonucleotides targeting miR-221, tumor growth was inhibited 
and no systemic toxicity was observed [40]. miR-221/222 also 
showed tumor suppressor activity in Gastrointestinal Stromal 
Tumor (GIST) cell lines, where miR-221/222 transfection 
promoted apoptosis through inhibition of KIT expression 
and activation of caspase 3 and 7 [41]. In MM cells highly 

expressing miR-221/222, enforced expression of miR-221/222 
inhibitors triggered in vitro anti-proliferative effects, along with 
upregulation of miR-221/222 targets such as p27Kip1, PUMA, 
PTEN and p57Kip2. Contrarily, in MM with low basal miR-
221/222, transfection of miR-221/222 mimics increased S phase 
and downregulated p27Kip1 protein expression. miR-221/222 
inhibitors were also evaluated in MM Xenografts in SCID/NOD 
mice. Significant anti-tumor activity was observed along with 
upregulation of established protein targets in tumors retrieved 
from animals [42].

Modulation of microRNA expression

MicroRNAs regulate the stability and translation of messenger 
RNA (mRNA), consequently controlling protein synthesis 
and gene expression. They control these processes at post-
transcriptional level by complementary binding to the sequences 
in the 3’-untranslated region of mRNA, and play a pivotal role in 
cell fate. Changes in miRNA expression are associated with several 
human diseases, including cancer, thus making them attractive 
therapeutic targets. However there are challenges to achieve 
therapeutic effects, using miRNA. Identification of molecules 
that regulate loss or gain of function of miRNA and their efficient 
delivery into the cell are two of the major challenges. 

OncomiRs are known to have links to the pathogenesis and 
aggressiveness of cancer. Large-expression screens comparing 
tumor versus normal tissues are useful for identifying unique 
miRNA signatures and can be used as attractive anti-cancer 
therapeutic targets [43-45]. The approach to miRNA based 
therapeutics involves inhibition of potent cellular targets. For 
example, miR-21 targets PTEN and PDCD4 [46-49]. Likewise, 
miR-155 blocks the translation of CEBPβ, IL17RB, PCCD4, TCF12, 
ZNF652, which are tumor suppressor genes [35,50]. Additionally, 
oncogenic miRNA targets have been validated in similar patient 
populations. The major obstacle in this area is finding an effective 
delivery mechanism, such as nano-particles, liposomes and 
peptides, majority of which have proven to be ineffective or toxic 
[51,52].

miRNA and cancer therapy

For over a decade, miRNAs have been hallmarks of cancer. 
OncomiRS have been profiled and shown to be causative factors 
in the activation of oncogenic pathways leading to cancer. Hence 
it is important to develop strategies to efficiently inhibit their 
expression. Use of small molecule inhibitors (SMIRs) presents 
an effective strategy to target specific miRNAs. Other methods 
of miRNA inhibition are based on antisense oligonucletides 
(antimiRs), locked nucleic acids (LNA), LNA-antimiR constructs, 
antagomirs, miRNA sponges, ribozymes/DNAzymes, small 
interfering RNAs (siRNAs) and short hairpin RNAs (shRNA). The 
discovery and usage of these strategies for cancer therapy were 
found to be exciting. However, there are challenges in delivery 
of these small-molecules, besides the pharmacodynamic and 
pharmacokinetic properties. Due to challenges in the delivery of 
these molecules, new approaches to target oncomiRs have to be 
discovered. The first miRNA molecule to reach clinical trials is 
Miravirsen, developed by Santaris Pharma A/S, a locked nucleic 
acid targeting miR-122. It is useful for the treatment of HCV 
(hepatitis C) infection, which increases the chance of patients 



Central
Bringing Excellence in Open Access





Bhadra et al. (2016)
Email:  

JSM Biotechnol Bioeng 3(5): 1070 (2016) 4/7

developing Hepatocellular carcinoma. Miravirsen completed a 
phase 2a study wherein a patient reached an undetectable level 
of HCV-RNA and robust activity was exhibited against viral load 
[53,54].

Since miRNAs are pivotal in cancer, they have been associated 
with every hallmark of cancer. Due to the challenges involved in 
using nucleotide analogs to target miRNAs, the development of 
small-molecule drugs targeting specific miRNAs was proposed 
to be a promising approach. The interaction of small molecules 
with miRNA was termed as “SMIR” by Melo and Calin et al. 
[55,56], commonly referred as small molecule inhibitors of 
specific miRNAs. This opened doors for a very specific, targeted 
cancer therapy. The SMIR-concept is attractive, as it takes 
shorter time in drug development and also reduces the time for 
approval and production, thus reducing the overall cost of drug 
discovery. However this approach is also challenging and risky. 
RNA transcripts, in the past, were not explored fully as drug 
targets, due to their electronegative charge and flexible structure. 
Additionally, X-Ray crystallography as well as Nuclear Magnetic 
Resonance structures for miRNAs were not well developed. The 
lower availability of miRNA-Dicer or RISC complex structures 
made drug discovery difficult. If these barriers are overcome, 
the SMIR approach will result in having effective drug delivery 
to patients. 

More recently, there is advancement in the development of 
efficient LNAs, targeting various cancers. miR-221/222 antisense 
LNA oligonucleotides reduce tumor growth by increasing intra-
tumor p27Kip1 protein expression in prostate carcinoma [57]. 
Other researchers showed the possibility to extend the results 
to human studies, prompting investigators to develop a novel 
13-mer locked nucleic acid (LNA)-chemically modified miR-221 
inhibitor, a fully phosphorothioate (PS)-modified backbone, the 
LNAi-miR-221 [58]. LNA modifications conferred prolonged 
effects and higher stability. This novel approach was also 
prompted by recent successful treatment of chronic hepatitis C 
patients with miR-122 LNA inhibitor [59]. Maria Eugenia Gallo 
Cantafio et al., demonstrated short half-life, optimal tissue 
biovailability and minimal urine excretion of LNA-i-miR-221 in 
mice and monkeys. LNA-i-miR-221 was still detectable in mice 
vital organs and in xenografted tumors, upto 3 weeks, along 
with p27 target upregulation. No toxicity in the pilot study 
with monkey model was observed [60]. In summary, these data 
suggest a prominent role of miR-221/222 in the development 
and progression of solid and hematological tumors. The recent 
findings on the use of selective inhibitors, as LNA-i-miR-221, both 
in vitro and in vivo are opening a new avenue for the design of 
miRNA-based therapies to be tested in clinical trials.

RNA as a target

RNA is an attractive target for drug development as it folds 
into three dimensional structures and is involved in various 
cellular processes [61,62]. Two main targeting strategies are 
(1) Oligonucleotides and (2) Small molecules. Due to ease of 
base-pairing, as per Watson-Crick rules, RNAs can be targeted 
by oligonucleotides. They are however high molecular weight 
compounds that cause difficulties in delivery into the cells. 
Modifications of oligonucleotides have helped traverse the cell 

membrane and reach the diseased tissues. Oligonucleotides can 
be synthesized to block translation, inhibit toxic RNA-protein 
interactions and avoid cryptic splice sites associated with disease 
[63]. Studies have shown that RNA can be used as a therapeutic 
target via small molecule interactions [64-66]. Small molecules 
have been designed, to target RNA repeats in genetic diseases 
[67-73] and miRNA precursors involved in cancer and other 
diseases [74-76].

Development of Oligonucleotides

Antisense oligonucleotides (ASOs) were first developed 
by Zamecnik et al., to target Rous sarcoma virus [77,78]. 
Complementary DNAs were used to bind to the virus and 
reduce the production of its RNA. Studies showed that DNA 
oligonucleotides form DNA-RNA hybrids in cells, which then 
recruit RNase H and result in cleavage of the RNA strand [79]. 
Modified oligonucleotides were made to improve stability in the 
presence of endonucleases, while retaining the RNase-dependent 
activity [80]. Site-specific modifications in the backbone and 
sugar moiety were created to increase the potential of these 
molecules to treat human diseases [81-83].

The most common accepted mechanism of action of ASOs, 
involves formation of mRNA-ASO duplex, through Watson-Crick 
pairing, leading to RNase-dependent cleavage of target mRNA 
[84-86]. Other mechanisms involve blockage of mRNA transport, 
modulation of splicing, translational arrest and formation 
of a triple helical structure through ASO binding to double 
stranded DNA resulting in inhibition of transcription. Chemical 
modifications of ASO drugs will increase in vivo half life, improve 
distribution to diseased tissue, increase potency and reduce toxic 
effects. Better understanding of importance of therapeutic target, 
dose optimization and scheduling, increasing trials with tumors 
that are sensitive to inhibition of relevant target and their use as 
combination therapy will increase the likelihood of success.

Small molecules to target RNA

Targeting RNA with small molecules is a challenging task, due 
to binding problems, non-specific interactions, and structural 
redundancy. A major advantage is that RNA folds into different 
structures and is composed of base pairs, and non-canonically 
paired regions, such as hairpins, loops and bulges. Base-paired 
regions are common to all RNAs, whereas the latter are unique 
to a single RNA or a smaller subset. A lead identification strategy, 
named Inforna [74,75] was proposed, that compares secondary 
structural elements in a target RNA to known RNA motif-small 
molecular interactions that are highly selective. Inforna has 
reported the design of small molecule leads that target RNAs 
involved in microsatellite disorders and miRNAs linked to cancer. 
Other methods in the design of small molecules to target RNA 
are structure-dependent. This has proven useful to generate 
molecules mimicking the binding of proteins to RNA. Another 
method is docking of small molecules into RNA, using NMR 
spectroscopy and molecular dynamics simulations [87,88].

CONCLUSION
There is an increased interest in RNA-drug discovery, 

owing to the roles played by RNA in healthy and diseased 
tissues. Precise medicines can be developed, that target RNA 
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and affect cellular function. Oligonucleotides as well as small 
molecules are of therapeutic potential. There is need, not only 
for making effective RNA inhibiting molecules, but to validate 
them. Rational computational methods have been validated, that 
enable functional studies on lead compounds, by predicting 3D 
structures of miRNAs. Undoubtedly miRNAs are being considered 
as potential molecules for targeting in cancer. 

A more precise way to silence specific miRNAs, would be to 
find a compound that binds to the primary, precursor or mature 
sequence of a miRNA in a specific manner. For instance, miR-21 
is overexpressed in breast, ovary, cervix, colon, lung, liver, brain, 
esophagus, prostate, pancreas and thyroid cancers. A SMIR that 
is specific to miR-21 is most likely to treat patients with these 
cancers via expression of OncomiR-21, as it negatively the 
tumor suppressive targets PTEN, PDCD4 and RECK. However we 
should also expect off-target effects, in both tissue of interest and 
throughout the body. Therefore newly discovered SMIRs have 
to undergo thorough in vitro and in vivo testing, before being 
released for patient use.
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