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Abstract

As an important part of precision medicine, liquid biopsy attracts more and 
more attention of scholars and clinicians. It refers to the real-time monitoring of the 
dynamic alterations of tumor by detecting circulating tumor cells (CTCs), circulating 
tumor DNA (ctDNA) and exosomes in patients’ plasma or serum. Thus, liquid biopsy 
has irreplaceable advantages in tumor early diagnosis, progression monitoring, 
curative effects evaluation, prognosis judgement and so on as a non-invasive method. 
Here we reviewed traditional clinical diagnostic technologies and the liquid biopsy 
and summarized the advantages, limitations and test indexes of CTCs, ctDNAs and 
exosomes for their clinical applications. We also enumerated other applications of 
liquid biopsy by using other body fluids to monitor some particular cancers. At last, we 
forecasted the opportunities and existed challenges of liquid biopsy.

ABBREVIATIONS
CEA: Carcinoembryonic Antigen; PSA: Prostatic Specific 

Antigen; NGS: Next Generation Sequencing; CTC: Circulating 
Tumor Cell; cfDNA: cell free DNA; ctDNA: circulating tumor DNA

INTRODUCTION
With high morbidity and mortality, cancer has become a big 

health threatproblem around the world [1,2].  There are two main 
techniques of traditional tumor clinical diagnostic: pathology 
and medical imaging. Pathological diagnosis technology mainly 
includes tissue biopsies, serological indicators (eg. CEA and PSA) 
test and molecular pathology test (eg. FISH, RT-PCR and NGS) 
[3]. On the other hand, medical imaging methods for clinical 
application include ultrasonic testing, X-ray imaging, CT, MRI, PET-
CT and endoscope. However, there exist inevitable disadvantages 
of these approachs. For example, the result of imaging usually 
lags behind tumor progression for medical imaging approach. 
And it lacks effective biomarkers for early diagnosis in serological 
indicators test, thus need further clinical examinations. As for 
tissue biopsy, though recognized as the current gold standard for 
tumor diagnosis, it also has its disadvantages due to the severe 
clinical complications resulting from sampling and the result bias 
caused by tumor heterogeneity. The most important, sometimes 
it is very difficult to obtain tissues, especially from terminal cancer 
patients. Thus, it is necessary to find new biomarkers which have 
high specificity and sensitivity for tumor diagnosis and can be 
used to dynamically and timely monitor tumor progression.

Tumor tissue will release tumor cells, DNA and exosomes 
into the body fluid, which offers a test approach called “liquid 
biopsy” (Figure 1) [4]. It means diagnosis and monitoring 
tumor initiation and progression by capturing and detecting 
biomarkers (eg. cell, DNA, RNA and protein) in body fluid (eg. 
blood, urine and saliva). The greatest strength of liquid biopsy is 
to allow doctors to noninvasively take repeated tumor samples. 
Other advantages include fewer side effects, ease of operation, 
rapid testing speed, decreasing the diagnosis bias from tumor 
heterogeneity and dynamically reflecting tumor progression. 
With these advantages, liquid biopsy has a wonderful future in 
the field of early diagnosis, tumor drug design, elucidating drug-
resistant mechanism, estimation of tumor’s grade and stage, 
judging prognosis and guiding treatment plan.

DETECTION TARGETS AND METHODS OF LIQUID 
BIOPSY

In 1869, Ashworth first found tumor cells in blood released 
by solid tumor and named it as circulating tumor cell (CTC) 
(Figure 1) [5]. In 2002 and 2003, Thiery and Steeg found the 
formation mechanism of CTC: after the emergence of primary 
carcinoma lined by an intact basement membrane in situ, 
activation/suppression of several pathways in it could induce 
an epithelial-mesenchymal transition (EMT), which means the 
basement membrane was fragmented and the epithelial cells 
of solid tumors intravasated into blood circulation and became 
solitary endothelial cells. These endothelial cells, which were also 
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named as CTCs now, couldsurvive in the blood, be transported 
to distant organsand might lead to micrometastasisor form a 
new metastatic carcinoma by a reversemesenchymal-epithelial 
transition (MET) [6,7]. During EMT, the down-regulation of 
E-cadherin leads to the loss of epithelial phenotype, while the 
modulation of other adhesion systems and the remodelling of 
actin cytoskeleton lead to the establishment of mesenchymal 
phenotype [6]. Since CTC carries phenotypic and genotypic 
information of solid tumor, it has been recommended as new 
tumor biomarker by American Society of Clinical Oncology 
(ASCO) in 2007. Although the mechanisms of CTC’s anoikis 
resistance and metastasis initiating potential are still unclear, it 
has become a novel hotspot in the therapy of many cancers such 
as breast, prostate, lung and colorectal cancer for years [8-12]. 
However, there are some limitations of CTC as a liquid biopsy 
biomarker. For instance, CTCs have a complex heterogeneity 
because of their original tumor cells’ known heterogeneity. First, 
the morphology of CTCs derived from different tumor tissues 
through EMT is significantly different. Second, even within only 
one cancer, the morphology and amount of CTCs derived from 
different molecular subtypes of solid tumors or distant sites 
(eg. prostate primary and bone metastatic cancers) are distinct. 
Third, in clinical practice, the percentage of patients whose CTCs 
can be detected is also different between cancers (eg. colorectal, 
ovarian and breast cancer is 50-70%, while non-small cell lung 
cancer is only 30%). This inter- and intra-patient heterogeneity 
mentioned above might lead to diagnosis bias caused by missing 
some small subclones of tumor cells like tissue biopsy. Thus 
doctors should reach an agreement on a clinically minimum 
number of profiled CTCs to account for heterogeneity in the 
future. Besides, the phenotypic diversity of CTCs also presents 
a challenge for choosing appropriate detection assay conditions. 

Because of CTCs’ low concentration, ranging from 1 to 10 cells 
per 10mL peripheral blood, it is necessary to enrich CTCs before 
analysis [13]. At present, there are three enrichment technology 
principles: biological properties (eg. immunoaffinity of antibody 
and cell surface antigen), physical properties (eg. CTCs’ density, 
size and surface charge) and directly analyzing CTCs in the blood 
[13]. The enrichment technology using biological properties 
includes positive (eg. EPCAM and CellSearch® system) and negative 
selection [14-16]. Among them, the counts of CTCs detected by 
CellSearch® system has been approved to clinical use to judge 
prognosis of prostate, colorectal and metastatic breast cancer by 
FDA. So far, this is the only liquid biopsy technology approved 
by FDA. After enrichment, there are many methods for analysis 
of CTCs, such as immunophenotyping, FISH, target PCR, DNA 
sequencing, RT-PCR and RNA-seq [17]. As a part of CellSearch® 
system, immunophenotyping (EpCAM+CK+DAPI+CD45-) has 
become a gold standard of CTC detection [17,18].

In 1948, Mandel and Métais first found cell free DNA in 
health people’s blood [19]. In 1977, Leon et al first found the 
concentration of this DNA raised in cancer patients’ blood [20]. 
After that, more and more evidences proving that tumor cells could 
release fragmentary single/double strand DNA to peripheral 
blood by necroptosis, apoptosis and secretion were observed 
(Figure 1). Finally it was named as cell free DNA (cfDNA) [21]. The 
length of cfDNA ranges 70-200bp and the average concentration 
in cancer patients’ blood is 180ng/mL [22]. Among cfDNA, those 
released by solid tumor were named as circulating tumor DNA 
(ctDNA). ctDNA has been detected in various cancer patients’ 
blood and its mutations show a significantly positive correlation 
with tumor’s stage and grade malignancy because they carry with 
the genotypic and methylated information of their original solid 
tumor [22]. Moreover, ctDNA’s half-life is less than two hours, 
which means it can be used to monitor tumor progression timely. 
Thus ctDNA has become a typical detection target of real-time 
liquid biopsy. Currently, researchers usually use plasma instead 
of serum to extract cfDNA to avoid the interference of white blood 
cells’ genome. However, the percentage of ctDNA in cfDNA is very 
low (0.01%-1%). So the detection of ctDNA becomes a challenge. 
Some existed ctDNA’s genomic variations detection technologies 
include droplet digital PCR (ddPCR), BEAMing, ARMS, TAM-
Seq and CAPP-Seq [23-26]. On the other hand, there are some 
methods developed for detection of ctDNA’s methylation profile, 
such as methylation-specific PCR (MSP), qRT-MSP, cMethDNA 
array, methylation on beads (MOB), BS-Seq and methylated CpG 
tandems amplification sequencing (MCTA-seq) [27-31].

Exosomes are small (50–100nm in diameter) and lipid 
bilayer membrane vesicles of endocytic origin. Their density 
ranges 1.13-1.19g/mL [32]. They are released by various cells 
(eg. tumor, immune and nerve cells) and can move along with 
blood circulation (Figure 1) [32]. According to the database 
established specifically for exosomes (http://exocarta.org), 
researchers have found a wide variety of inclusions in exosomes, 
including 9769 proteins (eg. CD9, MHC-I, EGFR, TSG101 and 
Hsp70), 3408 mRNAs and 2838 miRNAs [32,33]. Many studies 
have proved that exosomes play roles in tumor initiation, 
progression, metastasis and drug-resistance [6,32-37]. Based 
on these results, researchers have developed some exosomes 
targeted drugs and tried to use exosomes for drug delivery [38-

Figure 1 CTC, ctDNA and exosome in the blood. CTC, ctDNA and 
exosomecan be released in different forms and at different levels by 
tumor cells through apoptosis, necrosis and secretion. They can be 
detected in body fluid, such as blood, as biomarkers for real-time 
monitoring tumor initiation, progression, metastasis and drug-
resistance. This noninvasively test approach is named as “liquid 
biopsy”.

http://exocarta.org
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40]. The enrichment methods of exosomes are similar to those 
of CTC. After enrichment, many regular biological technologies, 
such as electron microscope, RT-PCR, western blot, FISH, flow 
cytometry and NGS, are used for exosomes analysis [41,42].

CTC, ctDNA and exosomes are three typical detection targets 
of liquid biopsy. Among them, it is relatively far for exosomes from 
lab to clinical application because of lacking effective enrichment 
technologies and precise quantitative analysis methods (Table 1) 
[32]. Comparatively, CTC and ctDNA have more alluring prospect 
of clinical application. Both CTC and ctDNA have their own 
advantages and disadvantages and their results can supplement 
each other (Table 1). However, both of them have the problem of 
false positive and false negative in clinical diagnosis. Compared 
with CTC, the sensitivity and specificity of ctDNA’s detection can 
significantly rise accompanied with the rapid development of 
NGS. Thus it might be widely applied in clinical test ahead of CTC. 
In fact, European Union has approved ctDNA test in the Iressa 
treatment of non-small cell lung cancer in 2014.

TEST INDEXES OF LIQUID BIOPSY
There are many different test indexes for CTC, ctDNA and 

exosomes. First, the amount of CTC can be used for tumor 
diagnosis. For instance, it suggests that the prognosis of prostate 
and metastatic breast cancer will be poor if 5 or more CTCs are 
detected out by CellSearch® system in 7.5mL peripheral blood. 
Second, tumor marker proteins on the surface or inside of CTC or 
exosomes can be tested as another kind of index, such as EpCAM, 
CK8, CK18, CK19, CD44, CD24, ALDH1 and Hsp72 [35,43-46]. 
Third, the integrity of ctDNA can also be detected as an index. 
Some studies have reported that the breast and ovarian cancer 
patients lacking ctDNA microsatellite heterozygosity have poor 
prognosis [47,48]. Fourth, many genes’ mutation were found in 
CTC, ctDNA and exosomes, such as APC, EGFR, ESR1, PIK3CA and 
KRAS [23,49-55]. These genes’ mutation frequencies were related 
to tumor grade, chemotherapy and drug-resistance and thus can 
be used to timely monitor tumor progression and curative effect. 

For example, the levels of APC G4189T mutation in colorectal 
cancer patients’ ctDNA decreased after surgery and increased 
when recurrence was identified by radiological examination 
[53]. Thus it could be seen as a measure of tumor burden and 
used to monitor tumor progression and recurrence. Compared to 
APC, within the same cancer type, another studies reported that 
several mutations of KRAS in ctDNA almost did not exist before 
treatment but significantly emerged and increased during anti-
EGFR therapy, following by the emergence of clinically resistance 
after several months [51,54]. Thus it could be used as a new 
molecular measure of acquired resistance to targeted agents. 
In the future clinical practice, multiple biomarkers including 
mutations of both APC and KRAS would be profiled to obtain a 
reliable global picture of colorectal cancer. Another important 
and popular subject is the mutations of EGFR in serum, which can 
affect EGFR blockade therapies and reflect the dynamic changes 
of tumor ahead of medical imaging for several months [26,55]. 
Fifth, DNA methylation profile is a very important test index for 
now. Pack et al., found SEPT9’s hypermethylation in ctDNA is 
closely related to colorectal cancer progression [56]. Similarly, 
the methylation levels of APC, RASSFIA, DAP-kinase and KIF1A 
are significantly changed in breast cancer patients’ ctDNA [57-
59]. Especially, Bryzgunova et al. found the promoter of GSTP1 
was hypermethylated in ctDNA from prostate cancer patients’ 
blood and urine, which is consistent with the result of tissue 
biopsy [60,61]. Unlike mutations, DNA methylation is tissues/cell 
types-specific, which means we can figure out the origin of ctDNA 
by comparing its DNA methylation pattern to known organs’ 
[62]. Finally, the up-regulation of some RNA, such as TTF-1 and 
ICAM-1 mRNAs, are also reported in cancer patients’ peripheral 
blood [63,64].

CLINICAL APPLICATIONS OF LIQUID BIOPSY
As biomarkers that can timely and dynamically reflect 

tumor’s status, CTC, ctDNA and exosomes have broad application 
prospects in many stages of tumor therapy. First, early diagnosis 

Table 1: Advantages, limitations and test indexes of CTCs, ctDNAs and exosomes.

Subject Advantages Limitations Test indexes

CTCs Count is significantly correlation with prognosis, the 
currently only one liquid biopsy method approved by 
FDA
Allow both phenotypic and genotypic analysis, 
including cell morphology, NGS, protein localization 
and other immunolabeling-based approaches
Potential relation with the tumor progression and 
metastasis 
Various technologies for CTC enrichment or isolation
High specificity
Allow culturing and analysis in vitro

High heterogeneity of morphology and 
count in different cancers and patients
Low abundance and fragility
False negative and false positive results
Cannot decrease the diagnosis bias from 
tumor heterogeneity

Count
Maker proteins
Mutation
DNA methylation
RNA

ctDNAs High sensitivity
Allow analysis of DNA sequence and methylation, 
including PCR and NGS Can decrease the diagnosis 
bias from tumor heterogeneity
Timely and dynamically monitor tumor progression

Low specificity because of cfDNA from 
normal tissues
False negative and false positive results

Concentration
DNA integrity
Microsatellite alterations
Mutation
DNA methylation

Exosomes Allow analysis of DNA, RNA and proteins from solid 
tumor
Potential relation with the tumor drug-resistance and 
metastasis

Lacking effective enrichment method Concentration
Maker proteins
Mutation
DNA methylation
RNA
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is one of the most important application area that liquid biopsy 
displays the most advantages than tissue biopsy and imaging 
examinations. Limited by minute size of lesions, tissue biopsy 
and imaging examinations have difficulty in finding early tumor. 
In contrast, biomarkers of many cancers can be detected in 
peripheral blood at an earlier stage, which can significantly 
improve the survival rate of patients by early detection and 
treatment [65]. Second, liquid biopsy can be used to monitoring 
tumor progression. Genes’ mutations’ frequencies in ctDNA and 
its dynamic alteration are positively correlated to tumor’s grade, 
stage and evolution, which can assist doctors to estimate tumor 
progression and evolution [22,65,66]. Liquid biopsy can also be 
used to monitoring and predicting the curative effect and risk of 
recurrence. For example, Thress et al., found lung cancer patients 
with EGFR C797S mutation in ctDNA developed resistance to 
drug AZD9291, which suggested the waning curative effect of 
this targeted drugs and the need to switch to another medication 
[64-67]. In addition, PIK3CA mutations in ctDNA can be used 
to detect breast cancer’s minimal residual disease (MRD) 
after chemotherapy or surgery [68]. At last, the DNA integrity, 
microsatellite alterations, mutation and methylation of ctDNA 
were all reported to relate to the prognosis of various cancers 
thus can be used to predicting the prognosis and helping doctors 
adopt the most suitable treatment to each one patient [22].

Besides peripheral blood, it is worth noting that other body 
fluids can also be used to monitor some particular cancers. For 
instance, the methylation pattern of a CpG site was identified 
as a biomarker for prostate cancer non-invasive diagnosis by 
urine DNA methylation detection [69]. Its sensitivity is 94.6% 
and specificity is 78.3%, which is better than PSA concentration 
(clinical index). In addition, Erbes et al., found that the difference 
in nine miRNAs’ expression levels in urine could distinguished 
the breast cancer patients from other non-cancer ones (both 
sensitivity and specificity are 91.7%) [70]. Based on these 
researches, we can speculate that other methods, such as using 
saliva to test esophagus cancer and using urine to test renal or 
bladder cancer, might be developed in the future.

DISCUSSION & CONCLUSION
In summary, liquid biopsy have many advantages: 

noninvasively and repeatedly taking sample, timely and 
dynamically monitoring tumor initiation and progression, 
judging prognosis and assisting doctors to change treatment 
plan. However, there still exist some challenges that obstruct the 
development and application of liquid biopsy in clinical practice.

First, because of low concentration of CTC, ctDNA and 
exosomes, the sensitivity, specificity and robustness of current 
detection technologies need to be improved. In addition, it is 
difficult to detect gene mutations, amplifications and fusions in 
parallel in such a low concentration of samples. Compared with 
the most commonly used ddPCR, which can only detect gene 
mutations, NGS can detect all of indexes in parallel with the 
current highest (but still not high enough) sensitivity. Moreover, 
despite rapidly falling down of NGS’s cost, it is still high for clinical 
practice. Second, the sample size in most of current researches 
of liquid biopsy is small (range 3-1000). It is necessary to test 
these studies’ conclusion in more clinical samples and answer 
these key questions: Can the sensitivities and specificities 

of biomarkers screed out using a few samples keep high in 
thousands of patients? How to deal with a biomarker’s different 
representations in different patients and different cancers? Can 
we find a type of biomarker which can detect various tumors at 
one time? For answering these questions and using liquid biopsy 
in clinical practice, these biomarkers need further tested. Third, 
the standardization of every step of liquid biopsy, including 
sampling, enrichment, NGS, gene annotation, analysis result 
interpreting and inspection reports issuing, is necessary but 
lacking. Finally, liquid biopsy must benefit patients, which means 
two things. On one hand, no matter early diagnosis, monitoring 
tumor progression or judging prognosis, the ultimate meaning of 
liquid biopsy is to improve cancer patients’ lives, including overall 
survival, median survival time and progression-free survival. 
A previous study on metastatic breast cancer patients showed 
that despite close correlation of CTCs’ counts and prognosis, the 
survival of patients with increased CTCs after chemotherapy was 
not improved after changing treatment plan [71]. On the other 
hand, there is no need to excessively pursue high sensitivity of 
detection technology. It has been reported that despite higher 
sensitivity of amplification refractory mutation system (ARMS) 
than NGS, non-small cell lung cancer patients treated by gefitinib 
could not benefit from it [72]. Thus, when people develop 
new detection technologies or find new biomarkers, whether 
patients benefit from it, rather than technologies or biomarkers 
themselves, is the ultimate criterion.

Although some problems still exist, there is no doubt that 
liquid biopsy is welcomed by doctors and markets because of 
its huge potential. With continuous improvement of detection 
technologies, more and more new found biomarkers and 
verification by large-scale clinical samples, we believe that liquid 
biopsy will become a strong supplement to traditional detection 
methods and play significant roles in tumor prevention, early 
diagnosis, therapy and pathogenesis research in the near future.
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