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Abstract

To treat Glioblastoma, we recently proposed the use of hyperthermia plus 
radiation. Hyperthermia was generated by a transcranial, MR guided, high intensity 
focused ultrasound device (TcMRgFUS). To obtain this result, minimal modifications of 
this device, primarily conceived for small volume ablation, were required, in particular 
reduction of the single-pulse power and a change of the pulse shape. In this paper 
we discuss the main characteristics of the proposed method and review possible 
improvements.

INTRODUCTION
Glioblastoma (GBM) is the most aggressive tumour of the 

central nervous system, corresponding to grade IV of the World 
Health Organization’s classification [1]. This kind of glioma is the 
most common primary brain tumour in adults. The incidence is 
about 3 per 100,000 person-years in USA, the median survival 
time is of about 15 months after diagnosis [2] and 12months after 
first resection [3]. 

The invasive nature of GBM into the perivascular space has 
recently been demonstrated [4]: in this way the tumour doesn’t 
need, for its growth, to create a new network of blood vessels 
(aka angiogenesis). GBMs recur in more than 90% of patients, 
usually centrally [5]. The current standard treatment includes 
external-beam radiotherapy (EBRT), maximal surgery, and 
chemotherapy with temozolomide (TMZ). Early Phase II clinical 
trials using bevacizumab, a monoclonal antibody against VEGF, in 
both newly diagnosed and recurrent high-grade gliomas (HGG) 
showed promising results, but these have not been confirmed in 
recent Phase III trials [6]. This seems consistent with the quoted 
direct access of the tumour to the normal microvascular vessel 
‘tree’. 

Treatments that include EBRT result in a significant increase 
in patient survival [7]. Dose escalation studies have demonstrated 
survival improvements up to an overall dose of 60 Gy [8,9], 
generally with 2 Gy/day fractionation, 5 days a week for 6 weeks 

(60 Gytotal dose). Beyond this dose there is only a minimal 
increase in survival at the cost of potentially severe toxicity [10]. 
The study by Elaimy et al. [11], supports the use of stereotactic 
radio surgery (SRS) either to boost EBRT treatment or to treat 
small-volume recurrences.

There are ongoing studies of immunotherapy in patients 
with GBM, including preliminary work with a tumour-
specific vaccine-targeting epidermal growth factor receptor 
variant III (EGFRvIII) which is a constitutively activated and 
immunogenic mutation widely expressed in GBM [12]. Tumour 
heterogeneity and the aggressive nature of GBM affect also 
the potential success of immunotherapy. However, targeting 
cytomegalovirus pp65 by using dendritic cells, very impressive 
results are recently obtained on a small cohort of eleven patients 
of newly diagnosed GBM [13]. Different combination strategies 
may also produce significant gains in patient survival [14]. 
Transcranial high-intensity focused ultrasound with MR 
guidance (TcMRgFUS) has the potential to be an important 
weapon for intracranial therapy [15], in particular as an ablative 
device at higher frequencies (650 kHz) [16,17] that can open and 
close the Blood Brain Barrier (generally at lower energies and 
with the use of contrast media) both with external [18-20] and 
implantable transducers [21]. In this way a greater absorption of 
chemotherapeutic drugs in the tumour is obtained. 

In this complex panorama, we decided to explore how to 
combine TcMRgFUS generated hyperthermia with radiation [22]; 
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we review here the main aspects and possible improvements of 
the technique.

MATERIALS AND METHODS

The slowing down effect of radiations, stem cell 
hypothesis, hyperthermia

The quoted radiobiological data demonstrate the high 
resistance of glioblastoma to radiation. Still, the data are not 
sufficient to explain the unsatisfactory clinical results. In fact, like 
other tumours, glioblastoma exhibits an “adaptive response”: the 
effect of radiation on tumour cells is not only small but decreases 
as the treatment progresses [23]. There is increasing evidence 
that solid tumours are hierarchically organized and contain a 
small population of cancer stem cells (CSCs) [24,25]. 

The subpopulation of CSCs has the capability of self-renewal, 
an unlimited capability of proliferation and a tendency to recur 
[26], differing from non-stem cells (CDCs). In-vitro and in-vivo 
experiments have shown that glioma CSCs are significantly more 
resistant than normal, differentiated cells [27]. 

In particular, the three human glioma cell lines (U-87MG, 
U-138MG, U-373MG) have a large capacity to recover from 
potentially lethal radiation damage. Since hyperthermia causes 
radio sensitization and inhibition of recovery from radiation 
damage, its combination with radiotherapy creates a potent 
combination for treating human brain tumours [23,28-31].

In fact the Raaphorst et al. [29], survival curves obtained with 
an hyperthermic treatment of 15 min at 45°C (CEM43 = 60 min) 
were nearly super imposable on those due to carbon ions from 
Ferrandon et al. [32]. 

Potentially therefore, TcMRgFUS generated hyperthermia 
combined with radiation is the perfect weapon, but the critical 
parameter is the time between the two applications: the maximum 
effect is obtained when the applications are simultaneous, but by 
increasing the delay time, the effect is progressively reduced. For 
a simulation, we choose 1 and 2 hours delay to allow the patient 
to be moved to and re-positioned in the second treatment room. 

The use of a MRgFUS as an hyperthermic device

In a recent paper, Coluccia et al. [16], described the first 
successful non-invasive thermal ablation of a brain tumour with 
transcranial magnetic resonance-guided focused ultrasound 
(TcMRgFUS). 

This paper reported a tumour recurrence in the left thalamic 
and sub thalamic region after surgery for a posteromedial 
temporal lobe GBM. A total of 25 sonication was applied (17 over 
the heat ablative threshold); the total sonication time was more 
than 3 h and about one tenth (0.7 cm3) of the total enhancing 
tumour volume (6.5 cm3) was ablated with an Insight ec MRgFUS 
Exablate Neuro system [31]. The single ablation volume was 
about 0.041 cm3 = 41 mm3 imagine a small cylinder of 3.6 mm 
in diameter and 4 mm in height), while the average ablation 
efficiency was 0.7 cm3/180 min = 3.9.10-3 cm3/min = 3.9 mm3/
min. 

The single pulse lasted 10 - 25 s and transmitted 150-950 
watts of acoustic power into the targeted tumour tissue, where 

acoustic attenuation is converted into heat, considering that the 
main absorption comes from skull bone (30-60 times that of the 
soft tissue [33]). So a cooling period of around 80-90 minutes 
is required after each sonication to prevent adverse thermal 
lesions in the skull bone, the adjacent tissue, and the meninges. 
Considering that the tumour volume can be of the order of 90 cm3, 
only an extraordinary (and improbable) increase of the MRgFUS 
device power could enable the system to ablate a whole tumour.

 A possible solution would be to drastically reduce the pulse 
energy, going from ablation (about CEM43 = 1000 min) to 
hyperthermia (CEM 43 - 60 min), drastically reducing the pulse 
time toabout 7-8 seconds with an average temperature of about 
52°C. That could yield the required CEM 43 of about 60 min.

With such a short time the warming of the whole tumour 
reported by Coluccia et al. [15], can be obtained in the reasonable 
time of about 1.5 hours, also allowing a 20 s cooling time between 
the sonications. Then we have to transfer the patient to the 
radiation room for the second treatment.

RESULTS AND DISCUSSION
Considering the MRgFUS device as an hyperthermic one, 

not one tenth but the whole tumour can be treated and several 
combined protocols are allowed. Taking into account the 
complexity of patient positioning and standard MRI image 
acquisition, we propose, in particular, a treatment in which both 
hyperthermia and radiation are given only once weekly, with a 
radiation dose of about 5 Gy each time. 

The whole treatment would last 6 weeks, with a total 
radiation dose of about 30 Gy. Compared with “standard” 
radiation treatments, the strong synergy between radiation and 
heat allows us to make the total dose very low. For the patient, 
this would be a very “gentle” treatment. 

On the other hand it would be extraordinarily effective. A 
standard radiation treatment (α = 5.4 × 10−2Gy-1,β = 4.2 × 10−2Gy-

2) 2 Gy/day, 10 Gy/week, 6 weeks of treatment for a total dose 
of 60 Gy [29]) would result in a minimum value of the clonogens 
of about 3.61 × 10−4 and a time to regrow the tumour to its initial 
volume of 2.29 years [29]. Due to the “adaptive response” and 
stem cell effect, the median survival is less than one year [34]. 
In contrast, the proposed treatment, with a one hour time delay, 
would result in a minimum value of the clonogens of less than 
10−7 and a time to regrow of the tumour at the initial volume of 
4.5 years. With 2 hours delay the minimum value of the clonogens 
becomes less than 10−6 and a time to regrowth of the tumour to 
its initial volume of 3.9 years [22]. 

Considering the low minimum value of clonogens and the 
hyperthermia stimulation of the immune system [35], we could 
expect an even better result. In particular the possible tumour-
protective effect of heat shock proteins is low if the time interval 
between the treatments is short and may reach its maximum 16 
hours after the heating [36]. 

There remain (at least) two problems. One is the total time 
that the patient needs to stay in the MRI system. An important 
improvement could come from ‘painting’ the heat dose over the 
target volume by the movement of the focal spot [37-40]. Another 
linked problem could be the excessive bone warming, potentially 
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inducing pain in the patient and then requiring longer cooling 
times. Our proposed therapy [22] would administer to the 
patient about half the total “Equivalent Thermal Dose” respect 
to the quoted ablative therapy [16], so that a significant bone 
warming is not expected, at least for the considered, centrally 
located, small tumour.

In addition, it is important to consider the evolution of GBM. 
Several GBM models [41-43] predict that in the evolution of the 
disease, the biologically active (proliferating and infiltrating) 
region is pushed away from the tumour core, in a region 
bordering the central part, that becomes progressively larger 
and necrotic. Therefore, it seems reasonable to concentrate both 
radiation and hyperthermia in this more external region. This 
would change radically the current GBM treatment planning, in 
which the maximum of the dose is located in the tumour centre, 
and would reduce significantly the volume of the region to be 
heated (and irradiated). 

In light of the above, there is significant room for improvement. 
The proposed technique could radically improve the current GBM 
cure rate. Experimental verification is therefore urgently desired.
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