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EDITORIAL
In the past, cancer development was generally considered to 

be a disease that is caused by genetic alterations (e.g., mutations, 
chromosomal abnormalities) in tumor-suppressor genes and/or 
oncogenes. However, it has become increasingly apparent that 
cancer is also caused by epigenetic changes. DNA methylation is 
recognized as one of the most important epigenetic mechanisms, 
and is widely studied in humans. In many different cancer types, 
aberrant DNA methylation has been shown to play a critical 
role in tumorigenesis and cancer progression. Understanding 
DNA methylation status is important for early diagnosis of 
cancer, monitoring of tumor behavior, and evaluating the 
response of tumors to targeted therapy. Epigenetic evaluation 
in pathological states has become the focus of many studies, and 
cancer epigenetics is rapidly moving into a translational phase. 
In this editorial, we discuss the most widely used and latest DNA 
methylation analytical methods with the potentiality of clinical 
applications in the study of cancer. 

DNA methylation, which most commonly occurs at the 5th 
carbon within CpG dinucleotides, plays an important role in gene 
silencing, and generally, near the transcriptional start site of a 
silenced gene is hypermethylated [1]. In cancer, it is generally 
believed that a high level of DNA methylation in the vicinity of 
the transcriptional start site is associated with the silencing of 
tumor-suppressor genes. To distinguish between methylated 
and unmethylated cytosine, sodium bisulfite is most commonly 
used. Bisulfite treatment converts unmethylated cytosines to 
uracils, and methylated cytosines remain cytosines [2]. After PCR 
amplification, uracils that represent unmethylated cytosines are 
read as thymidines. 

Methylation-specific PCR (MSP) analysis

Methylation-specific PCR (MSP) and real-time quantitative 
MSP (QMSP) analysis are bisulfite conversion-based PCR 
techniques and are continually used to distinguish between 
methylated and unmethylated allele in the genome. In a MSP 
analysis, two primers are designed to detect methylated and 

unmethylated CpG, the methylated CpG (M primer) and the 
unmethylated CpG (U primer), respectively. MSP analysis, 
including QMSP, is the most commonly used technique for 
analysis of clinical samples [3,4]. Most recently, We showed 
that oral squamous cell carcinoma could be detected with >90% 
sensitivity and specificity using QMSP analysis based on the 
promoter DNA methylation status of some tumor-related genes 
obtained from oral rinse samples [5]. In contrast, to increase the 
sensitivity of MSP analysis in clinical samples, nested-MSP was 
developed [6]. Nested-MSP enabled us to detect DNA methylation 
more sensitive in low quality/quantity of starting DNA. Although 
MSP analysis identifies only a limited number of CpGs in a 
primer sequence, it is regarded as a high sensitivity, rapid and 
inexpensive method. 

Pyrosequencing analysis

Pyrosequencing is a sensitive real-time sequencing 
methodology for the investigation of DNA methylation level at 
specific CpG sites [7]. To carry out the pyrosequencing reaction, 
biotin-labelled amplicon generated from bisulfite-converted DNA 
is used as a template. This technique relies on the luminometric 
detection of released pyrophosphate (PPi) during DNA synthesis. 
Pyrosequencing is a highly reliable method and has become 
the gold standard for DNA methylation analysis. Recently, 
Pyrosequencing has also become one of the most commonly used 
techniques for analysis of clinical specimens [8,9]. An important 
limitation of pyrosequencing is that it can be performed only for 
relatively short DNA sequence reads (<100bp).

MassARRAY analysis

MassARRAY is one of the main methods for genome-wide 
DNA methylation analysis. MassARRAY combines bisulfite 
treatment, PCR and base-specific cleavage with matrix-assisted 
laser desorption ionization time-of-flight (MALDI-TOF) 
mass spectrometry analysis [10]. MassARRAY allows for the 
quantitative DNA methylation analysis of multiple CpG sites in 
a large number of clinical samples [11]. Yin et al. suggested the 
possibility that the aberrant DNA methylation within the PTEN 
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promoter may potentially serve as a candidate biomarker for 
soft tissue sarcomas using 110 different clinical specimens [12]. 
Although MassARRAY analysis has a disadvantage in the cost of 
the instrument, there are many significant advantages such as 
highly accurate, sensitive, and high-throughput capability. 

Methylation specific electrophoresis (MSE) analysis

A novel DNA methylation analysis approach named 
methylation specific electrophoresis (MSE) was recently 
developed [13]. MSE is the modification of the Bisulfite-DGGE 
(denaturing gradient gel electrophoresis) [14] using a nested 
PCR technique. Following the conversion of bisulfite, the MSE 
technique requires the amplification of the target DNA using 
nested PCR. After DNA amplification, samples are applied to 
denaturing gradient gel. The MSE method decreases the amount 
of input DNA (minimum detectable amount of DNA is 20 pg) 
and lowers the detection limit for detecting the difference in 
methylation status is <0.1%.

The MUC1 transmembrane glycoprotein is a poor prognostic 
factor of the potential for malignancy [15], and is ranked as one 
of the most important cancer antigens [16]. The methylation 
status of MUC1 promoter indicated a good correlation with the 
level of MUC1 expression [17]. Most recently, we showed that 
the level of MUC1 promoter methylation in pancreatic ductal 
adenocarcinoma was significantly lower than in intraductal 
papillary mucinous neoplasm using pancreatic juice samples [13]. 
MSE analysis can efficiently detect DNA methylation patterns or 
continuity in the target region. Therefore this method can be 
quite useful for evaluating CpG methylation status and patterns 
in the region of interest. In the future, it is expected that more 
quantification approaches will be developed. 

Clinical perspectives

In cancer, DNA methylation is a promising biomarker for 
early detection, diagnosis, prognosis and prediction of response 
to therapies. However, there are many problems that need 
to be overcome in studying DNA methylation using clinical 
specimens. The most critical issue is heterogeneous population 
of cells. CpG methylation status can change by cell/tissue type. 
Thus, interpretation of altered CpG methylation in these mixed 
populations requires caution and prudence. Meanwhile, we have 
to face problems of limited availability of starting DNA. Also, the 
amount of DNA recovered will be strongly influenced by cell/
tissue type and the difference in clinical specimen (e. g. , body 
fluids, formalin-fixed paraffin-embedded tissue). In addition, 
there must also be consideration of analysis cost per sample 
depending on the number of samples and regions of target genes. 
A large number of methods can be used for the DNA methylation 
analysis. There is more than one appropriate approach of DNA 
methylation analysis in clinical application. Responding to a 
variety of sample conditions and purpose of the examination, 
investigators can select the most optimal method or various 
combinations of the approaches for their specific research needs. 
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