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Abstract

Mustard gas has been used as a chemical weapon since 1917 during World War 
I. Since then, many reports have shown that survivors of attacks and those who make 
mustard gas exhibit a higher incidence of cancer than the normal population. We have 
recently shown that centrosomes may play a role in mustard gas-induced cancers since 
the mustard gas surrogate 2-chloroethyl ethylsulfide (2-CEES) increases centrosome 
amplification (more than two centrosomes per cell) in the Saos2 cell line (human 
osteosarcoma). To begin to delineate some of the mechanisms that might regulate 
2-CEES-induced centrosome amplification, we exposed Saos2 cells to the antioxidants 
Trolox and glutathione (GSH) and 2-CEES in various combinations for 24 hours. We 
show that Trolox has a minimal effect on inhibiting centrosome amplification, whereas 
glutathione prevented 2-CEES-induced centrosome amplification below control levels. 
These data provide insight as to how 2-CEES can induce centrosome amplification, 
but whether or not that is more related to protein, lipid, or DNA damage is yet to be 
determined and should be investigated.

ABBREVIATIONS
MG: Mustard Gas; 2-CEES: 2-chloroethyl ethylsulfide; 

CIN: Chromosome instability; PCM: Pericentriolar material; 
MT: Microtubules; GSH: Glutathione; DMEM: Dulbecco’s 
Modified Eagle’s Medium; Trolox: (±)-6-Hydroxy-2,5,7,8-
tetramethylchromane-2-carboxylic acid; PBS: Phosphate 
buffered saline; TBS: Tris buffered saline; IgG: Immunoglobulin 
G; DAPI: 4’,6-Diamidino-2-phenylindole; ROS: Reactive oxygen 
species; PARP: Poly (ADP-Ribose) polymerase; ex: excitation; em: 
emission

INTRODUCTION
Mustard gas (MG, β, β’-dichloroethyl sulfide) has been used 

as a chemical weapon since World War I when the Germans 
attacked British troops in Ypres, Belgium in July 1917, and 
continues to be a threat today due to its ease of manufacture and 
use [1,2]. MG is a vesicant (blistering agent) that causes acute 
damage primarily to the skin, eyes, respiratory, and digestive 
organs, resulting in a number of complications such as painful 
blisters on the skin and mucous membranes, respiratory distress, 

conjunctival irritation, corneal ulceration, nausea, vomiting, and 
diarrhea [3]. Over time, cancers of various organs can develop 
in individuals exposed during battle or during the manufacture 
of MG [4-10]. On a cellular level, MG damages DNA directly by 
forming monoadducts and interstrand crosslinks with the 
former being the most common [11,12] and via oxidative stress, 
forming 8-oxo-2-deoxyguanosine as the major product [13-
15]. Chromosome instability (CIN) is a common phenotype of 
various cancer types and is thought to introduce multiple genetic 
lesions required for malignancy through the gain and/or loss 
of chromosomes during mitosis [16,17]. One mechanism that is 
thought to drive CIN is centrosome amplification. Centrosomes 
are small, non-membrane-bound organelles that are composed 
of two, orthogonally-arranged centrioles surrounded by an 
amorphous protein matrix called the pericentriolar material 
(PCM) [18]. They function to organize the microtubule 
(MT) network, the most notable being the bipolar mitotic 
spindle during mitosis, which directs the equal segregation of 
chromosomes during anaphase. After mitosis, daughter cells 
must duplicate their single centrosomes during S phase of the 
cell cycle to ensure that two and only two centrosomes are 
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present during the next mitosis [19]. If centrosome duplication 
is perturbed, centrosomes can fail to duplicate, resulting in a 
monopolar spindle. Alternatively, centrosomes could duplicate 
uncontrollably and produce a multipolar spindle, which has been 
shown to increase the instance of merotely (a single kinetochore 
attached to microtubules from opposite poles), thereby 
increasing the instance of lagging chromosome formation and 
chromosome instability [20]. Centrosome amplification can 
occur under a number of conditions. For example, inactivating 
mutations of p53 [21] or p21Waf1 [22] or activating mutations of 
cyclin E [23] can cause centrosome amplification. Additionally, 
DNA damage and oxidative stress have been shown to induce 
centrosome amplification as well [24,25]. We recently showed 
that 2-chloroethyl ethylsulfide (2-CEES), a surrogate of MG, 
induces centrosome amplification in Saos2 cells [26]. Since 
2-CEES damages DNA and induces oxidative stress [13,14], 
we wanted to further delineate the mechanisms that drive 
centrosome amplification in 2-CEES-treated cells using two 
different antioxidants that affect MG toxicity via two distinct 
mechanisms. Trolox, a water-soluble analog of Vitamin E [27], is 
known to inhibit oxidative stress, while glutathione (GSH) forms 
conjugates with MG directly and prevents both DNA damage and 
oxidative stress [14]. As a result, we show that Trolox does not 
significantly reduce 2-CEES-induced centrosome amplification 
in Saos2 cells, whereas GSH significantly reduces 2-CEES-
indcued centrosome amplification to levels below that of control 
conditions.

MATERIALS AND METHODS

Cell Culture

Saos2 cells (human osteosarcoma) were obtained from the 
American Type Culture Collection (ATCC, Manassa, VA, HTB-85) 
and cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) 
supplemented with 10% fetal bovine serum (FBS, Atlanta 
Biologicals, Norcross, GA), 100 U/ml penicillin, and 100 μg/ml 
streptomycin (Hyclone/Fisher, Waltham, MA) for maintenance 
and experiments. Cells were incubated at 37°C and 10% CO¬2 in 
a humidified incubator for all experiments.

Cell Treatment

Saos2 cells were plated in 24-well plates containing glass 
coverslips and incubated overnight so that they were sub 
confluent after an overnight incubation. Cells were incubated 
in various combinations of 250 μM 2-chloroethyl ethylsulfide 
(2-CEES, Sigma, St. Louis, MO), 10 mM glutathione (GSH, Sigma, 
St. Louis, MO), and 800 μM Trolox (Sigma, St. Louis, MO) for 
24 hours and then assayed for centrosomes using indirect 
immunofluorescent staining.

Centrosome Detection Assay

Cells were grown and treated on glass coverslips as 
described. After treatment, cells were washed in PBS and 
fixed in 4% formalin/methanol (FormaldeF resh, Fisher, 
Waltham, MA) for 20 minutes at room temperature followed by 
permeabilization with 1% Nonidet P-40 (Fisher, Waltham, MA) 
in PBS for 10 minutes at room temperature. Cells were blocked 
in 15% normal goat serum (Life Technologies, Carlsbad, CA) 
for 1 hour in a humidified chamber and then gently washed by 

dipping coverslips into three separate beakers of PBS. Cells were 
then incubated in rabbit-anti-γ tubulin antibody (Cell Signaling, 
Boston, MA) diluted in PBS for 45 minutes at room temperature. 
Cells were then washed with PBS for 15 minutes on a rocker and 
then exposed to AlexaFluor 594-conjugated goat-anti-rabbit IgG 
antibody (Life Technologies, Carlsbad, CA) diluted in PBS for 45 
minutes at room temperature in the dark. Cells were washed 
in Tris buffered saline (TBS – 150 mM NaCl, 20 mM Tris, pH 
7.4) for 15 minutes on a rocker in the dark followed by nuclear 
counterstaining with 500 nM 4’,6-Diamidino-2-phenylindole 
(DAPI, Sigma, St. Louis, MO) for 10 minutes in the dark at room 
temperature. Lastly, coverslips were washed again in TBS for 10 
minutes on a rocker in the dark at room temperature and then 
mounted on coverslips using Fluoromount-G (Southern Biotech, 
Birmingham, AL). The number of centrosomes was determined 
for at least 100 cells in each condition.

Centriole Analysis

To identify centrioles, cells were incubated on coverslips 
and treated as noted above. After treatment, the 24-well plates 
containing cells were incubated on wet ice for 30 minutes. 
Coverslips were then transferred to wells containing cold 
PBS and washed one time with cold PBS. Coverslips were then 
incubated in cold extraction buffer (0.75% Triton X-100, 5 mM 
PIPES buffer, 2 mM EGTA) on wet ice for about 10-30 seconds 
per well. Coverslips were then washed 2-3 times with cold PBS 
and then incubated in cold fixative (4% formalin/methanol, 
FormaldeFresh, Fisher, and Waltham, MA) on wet ice for 10 
minutes followed by 10 minutes in new, room temperature 
fixative. Coverslips were gently washed 2-3 times in room 
temperature PBS and then blocked in 15% normal goat serum 
(Life Technologies, Carlsbad, CA) for 1 hour in a humidified 
chamber, followed by a gentle wash in PBS by dipping coverslips 
into three separate beakers of PBS. Cells were then incubated in 
rabbit-anti-γ tubulin and mouse-anti-α tubulin antibodies (Cell 
Signaling, Boston, MA) diluted in PBS for 45 minutes at room 
temperature. Cells were then washed with PBS for 15 minutes on 
a rocker and then exposed to Alexa-Fluor  594-conjugated goat-
anti-rabbit IgG and Alexa-Fluor 488-conjugated goat-anti-mouse 
IgG antibodies (Life Technologies, Carlsbad, CA) diluted in PBS 
for 45 minutes at room temperature in the dark. Cells were then 
washed in Tris buffered saline (TBS – 150 mM NaCl, 20 mM Tris, 
pH 7.4) for 15 minutes on a rocker in the dark followed by nuclear 
counterstaining with 500 nM 4’,6-Diamidino-2-phenylindole 
(DAPI, Sigma, St. Louis, MO) for 10 minutes in the dark at room 
temperature. Lastly, coverslips were washed again in TBS for 10 
minutes on a rocker in the dark at room temperature and then 
mounted on coverslips using Fluoromount-G (Southern Biotech, 
Birmingham, AL).

Fluorescent Microscopy

Images were analyzed on a Zeiss AxioImager.A2 fluorescence 
microscope using 470/40 nm (ex) and 525/50 (em) for γ-tubulin 
(green), 565/30 (ex) and 620/60 (em) for α-tubulin (red), and 
365+ nm (ex) and 445/50 (em) for DAPI (blue). Images were 
captured using an AxioCam MRm camera and AxioVision software 
(ver. 4.8.0.0). Figures were assembled using PowerPoint and 
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Figure 1 (A) Representation of micrographs from which data for Figure 1B was derived. Cells were treated and then immunostained for γ-tubulin 
(green) and costained with DAPI (blue). Cells were categorized as having one (1 centrosome), 2 (2 centrosomes), or more than two centrosomes 
(>2 centrosomes). (B) The percent of cells in each condition with centrosome amplification (>2 centrosomes). *p < 0.05 compared to cells treated 
with 2-CEES only (column 5).

Adobe Photoshop CS2 (ver. 9.0).

RESULTS AND DISCUSSION
GSH, but not Trolox, inhibits 2-CEES-induced centrosome 

amplification. We previously showed that 2-CEES can induce 

centrosome amplification in Saos2 cells after 24 hour incubation 
[26]. Additionally, previous work has shown that GSH and Trolox 
differentially prevent 2-CEES-induced DNA damage in JB6 cells 
(mouse skin epidermal cells) and dermal fibroblasts, with GSH 
being more effective [14]. To further determine how 2-CEES-
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induced centrosome amplification might occur, we treated 
Saos2 cells with 250 μM 2-CEES in the presence or absence of 
800 μM Trolox, 10 mM GSH, both, or neither, along with the 
same 2-CEES untreated conditions, for 24 hours. Cells were 
then immunostained for γ-tubulin (a component of the PCM), 
to detect centrosomes, and counterstained with DAPI to detect 
nuclei. Centrosomes appeared as bright green dots (Figure 1A), 
the number of which was recorded as one, two, or more than two 
centrosomes per cell for at least 100 cells in each condition and 
then graphed (Figure 1B). Untreated, GSH- or Trolox-treated, 
and cells treated with both antioxidants showed low levels of 
centrosome amplification (6.2 – 11.4%). 2-CEES-treated cells 
exhibited high levels of centrosome amplification (24.3%), as 
expected. Interestingly, co-treatment of cells with 2-CEES and GSH 
significantly (p < 0.05) decreased centrosome amplification to less 
than control levels, while co-treatment of cells with 2-CEES and 
Trolox did not significantly decrease centrosome amplification (p 
> 0.05). Additionally, co-treatment of cells with 2-CEES, GSH, and 
Trolox together resulted in a significant decrease in centrosome 
amplification compared to 2-CEES only-treated cells (8.5% vs. 
24.3%). These results indicate that GSH alone or GSH with Trolox 
is more effective in preventing centrosome amplification than 
Trolox alone. To ensure that γ-tubulin stained structures were 
indeed centrosomes, coverslips from untreated and 2-CEES-
treated cells were immunostained for both γ- and α-tubulin. 
γ-tubulin is a major component of the PCM, while α-tubulin is 
found in both microtubules and centrioles. To specifically identify 
centrioles, cells were cold-treated, fixed, and immunostained 
with antibodies against α- and γ-tubulin (Figure 2).  As shown, 
γ- and α-tubulin staining colocalized, indicating that the γ-tubulin 
staining used to determine centrosome amplification was indeed 
centrosomes.

CONCLUSION
Here, we have shown that GSH significantly inhibits 2-CEES-

induced centrosome amplification in Saos2 cells, whereas Trolox 
does not. This differential effect on centrosome amplification 

provides some insight as to how 2-CEES can induce centrosome 
amplification in these cells. Both MG and 2-CEES form sulfonium 
ions in the body, which, due to its electrophilic nature, can bind 
to DNA, RNA, and proteins and cause cell toxicity and death [28-
31]. Additionally, both MG and 2-CEES can lead to an increase in 
reactive oxygen species (ROS) through the depletion of cellular 
GSH and antioxidant enzymes like superoxide dismutase, 
catalase, and glutathione peroxidase [14,32-34]. Interestingly, 
both DNA damage and oxidative stress have been shown to 
induce centrosome amplification [24,25]. In this work, we 
wanted to investigate whether direct macromolecular damage 
or oxidative stress was responsible for the observed 2-CEES-
indcued centrosome amplification from out previous work. To 
do this, we co-treated Saos2 cells with different combinations 
of GSH, Trolox, and 2-CEES. GSH is known to bind MG directly, 
forming conjugates, and has been shown to decrease 2-CEES-
induced cell death and DNA damage [14,35,36]. Trolox is known 
to decrease ROS and oxidative DNA damage in cells, but not direct 
DNA damage by 2-CEES [14]. Thus, any decrease in centrosome 
amplification due to GSH treatment can be attributed to its ability 
to prevent both direct macromolecule damage and oxidative 
stress, while any reduction in centrosome amplification in 
Trolox-treated cells can be attributed to its ability to prevent 
only oxidative stress. Our data showed that both GSH and 
Trolox, individually, decreased 2-CEES-induced centrosome 
amplification, although the latter was statistically insignificant. 
Additionally, GSH and Trolox together significantly decreased 
2-CEES-induced centrosome amplification in Saos2 cells. This 
indicates that 2-CEES-induced centrosome amplification likely 
occurs primarily due to its ability to directly interact with 
macromolecules. This supports observations that show that many 
proteins that regulate centrosome duplication are targets of MG 
toxicity, including p53, poly (ADP-ribose) polymerase (PARP), 
and NF-κB [21,37-40]. Although we show that GSH treatment 
significantly prevents 2-CEES-induced centrosome amplification, 
whether or not that is more related to protein, lipid, or DNA 
damage is yet to be determined and should be investigated.

Figure 2 γ-tubulin spots are centrosomes. Cells were treated and then immunostained for γ-tubulin (green, PCM), α-tubulin (red, centrioles), and 
counterstained with DAPI (blue). Centrosomes contain centrioles.
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Lastly, it is possible that the effects seen in our experiments 
may be the result of perturbations in cell cycle progression. 
Centrosome duplication is tightly coupled to DNA synthesis 
during S phase [41,42]. Thus, it is reasonable to think that 
cell cycle arrest in G1 or S phase would concomitantly prevent 
centrosome amplification. However, it has been shown that 
centrosome duplication can still occur during G1 and S phase 
arrest [17,43]. Trolox has been shown to not induce G1 arrest 
[44]. Regardless, the effects of GSH and Trolox on cell cycle 
progression should be investigated in relation to centrosome 
duplication and amplification.
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