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Abstract

Cripto-1 (TDGF-1) is a cell surface glycosylphosphatidylinositol-linked glycoprotein 
which functions as an obligatory co-receptor for transforming growth factor-β 
(TGF-β) family members. Cripto-1 is essential for early embryonic development 
and maintenance of embryonic stem cells. Cripto-1 has been shown to be activated 
in numerous human tumors. Notably, it is expressed in a population of cancer stem 
cells (CSCs) and facilitates the epithelial to mesenchymal transition (EMT) program. 
Furthermore, Cripto-1 can significantly enhance tumor cell migration, invasion and 
angiogenesis. Collectively, these facts suggest that Cripto-1 may be an attractive 
target in the diagnosis, prognosis and therapy aiming at cancer cell subpopulations 
with stem-like properties within aggressive tumors.

ABBREVIATIONS 
TDGF-1: Teratocarcinoma-Derived Growth Factor 1; EGF: 

Epidermal Growth Factor; TGF-β: The Transforming Growth 
Factor-β; EMT: Epithelial to Mesenchymal Transition; CSCs: 
Cancers Stem Cells. 

INTRODUCTION
The treatment of cancer is undergoing evolutionary changes 

as new information about the biology of cancer emerges. 
Nevertheless, one in four deaths are estimated to result from 
cancer according to data from 2013 [1]. Conventional therapies 
such as cytotoxic chemotherapy, radiotherapy and surgical 
resection can temporarily shrink and restrain the primary tumor 
but generally the tumor tends to relapse. New targeted therapies, 
which act on specific molecular targets that are associated 
with cancer such as Trastuzumab (a monoclonal antibody 
specifically targeting HER2/neu-over expressing breast tumors), 
Bevacizumab (a monoclonal antibody therapy against VEGF) 
or Gefitinib (a tyrosine kinase inhibitor targeting the EGFR, 
used to treat advanced non-small cell lung cancer),increase the 
effectiveness and precision of treatment, survival and quality of 
the patient’s life. Unfortunately, even targeted therapies do have 
limitations. Mainly, cancer cells can become resistant to them. 
Resistance to chemotherapy and molecularly-targeted therapies 
is one of the major causes which under lies cancer treatment failure 
[2]. Ginsburg and Willard [3] have reported that chemoresistance 
and treatment effects depend on the distinct patterns of genes 
associated with stemness/differentiation pathways. Indeed, 
tumors are a heterogeneous mixture consisting of epithelial 
non-stem cells and cancer stem cells (CSCs) with mixed 
epithelial to mesenchymal phenotypes [4]. Reports have shown 
a link between stem-like properties and therapy resistance in 

glioblastoma, colon cancer, breast cancer, acute myelogenous 
leukemia and numerous other tumors demonstrating that CSCs 
are more resistant to therapy compared to non-CSCs [5-8]. This 
minority tumor subpopulation of CSCs, due to features like over 
expression of ABC transporters, a slow rate of self-renewal, 
and an active DNA repair capacity, is probably responsible for 
chemoresistance in cancer and the reason why treatment fails 
[9]. Interestingly, many current drug treatments result in an 
enrichment of CSCs in the tumor [10] e.g. oxaliplatin treatment 
of colon cancers actually boosted the abundance of CSCs by more 
than 10 times [11]. It is clear that a more complete understanding 
of the properties and characteristics of CSCs is a key to future 
success in cancer treatment. To improve the outcome of cancer 
treatments, CSCs must be effectively targeted and eradicated. 

CANCER STEM CELLS
In adult organisms, normal stem cells can be found in different 

tissue types and function as an internal repair system, dividing to 
replenish specialized cells and also maintaining normal turnover 
of regenerative organs, such as blood, skin, or intestinal tissues 
[12]. Similar to normal stem cells, CSCs have been suggested 
to maintain the tumors and the abnormal regulation of CSCs 
is implicated in the generation and progression of malignant 
tumors. CSCs are defined by their ability to efficiently regenerate 
the original phenotype of the tumor upon inoculation into 
immune deficient mice [13]. This functional definition is often 
complemented by including the expression of cell-surface 
markers that are also expressed by the normal stem cells in the 
tissue of origin [14,15]. CSCs, also called tumor-initiating cells, 
were initially identified in the hematopoietic system [16,17]. 
Later, they were also found in solid tumors, including those 
arising in the breast, lung, prostate, colon, brain, head and neck, 
and pancreas [14,16,18,19]. Likewise, epithelial-mesenchymal 
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transition (EMT), which is critical during normal development, 
fibrosis and wound healing, has also been implicated as a means 
by which transformed epithelial cells can acquire the abilities to 
invade, resist apoptosis, and disseminate, thus contributing to 
tumor invasion and metastasis[20-23]. Recently, the link between 
activation of the EMT program and the genesis and maintenance 
of cells with stem cell-like properties has been confirmed [24-26]. 
This connection may generate more aggressive cell behaviors, 
hence demanding the development of therapeutic strategies 
designed to interfere with EMT and CSC activity within tumors.

CRIPTO-1 AND EMT
The Teratocarcinoma-Derived Growth Factor-1, Tdgf-1 

or Cripto-1 gene, a member of the TGF-β super family, plays 
a fundamental role in normal development as well as during 
the regulation of self-renewal and pluripotency of mouse and 
human embryonic stem cells. Furthermore, Cripto-1 represents 
a clear example of an embryonic signaling molecule which 
when reactivated in an uncontrolled manner can drive cell 
transformation and tumor progression in adult tissues [27]. 
Interestingly Cripto-1 effects multiple signaling pathways 
known to be EMT triggers such as transforming growth factor 
(TGF)-β, fibroblast growth factors (FGFs), Wnts and Notch 
[28]. Multiple studies showed that Cripto-1 over expression in 
mammary epithelial cells and multiple cancer cell lines leads to 
their enhanced migration and invasion capacity. HC-11 mouse 
mammary epithelial cells over expressing Cripto-1 undergo EMT, 
as shown by a decrease in E-cadherin expression and an increase 
in vimentin, N-cadherin, and Snail expression [29]. Also over 
expression of Cripto-1 in MCF-7 breast cancer cells, Caski human 
cervical carcinoma cells and LS174-T colon cancer cells show a 
significant increase in their migration and invasion behaviors 
compared with parental cell lines. Our previous study showed that 
mammary tumors from MMTV–Cripto-1 transgenic mice exhibit 
areas of morphological changes associated with EMT such as 
reduction of intercellular adhesion proteins, e.g. E-cadherin, and 
an increase in the expression of mesenchymal markers, including 
N-cadherin and vimentin. Moreover, we detected increased 
expression of several integrins, including integrins β3, β5, β1 and 
β4 [29], also linked to EMT and cell spreading. Markers of EMT 
could also be detected in uterine leiomyosarcomas that develop 
in approximately 20% of nulliparous or multiparous MMTV–
Cripto-1 mice [30].Since Cripto-1 has been found to promote 
EMT in vitro and in vivo in mouse mammary epithelial cells, 
cancer cell lines and mouse mammary tumors [28], it is possible 
that this gene is involved in driving an EMT program in breast 
cancer stem-like cells thereby supporting their self-renewal and 
metastatic abilities [31].

Cripto-1 expression is not restricted to malignant breast 
tissues.Cripto-1 is over expressed in a variety of human tumors 
and its expression has been associated with more aggressive 
behavior in several types of cancers [28]. Increased Cripto-1 
expression and decreased E-cadherin expression have been 
positively associated with tumor progression, poor prognostic 
factors (e.g. tumor size, depth of invasion, lymph node 
metastasis, liver metastasis, and TNM stage) in patients with 
gastric, breast and colon cancers [32,33].Several reports have 
showed that Cripto-1 might also play a role in human melanomas 
[34, 35]. Cripto-1 expression was detected in 43% of primary 
human cutaneous melanomas and in 57% of melanoma cell 

lines. In melanomas, Cripto-1 strongly enhanced the motility of 
melanoma cell lines and blocking of Cripto-1 expression using 
small-interfering RNAs significantly inhibited growth and the 
invasive ability of melanoma cells [34].

CRIPTO-1 AND CANCER STEM CELLS
Cripto-1 is known to be involved in stem cell maintenance 

and pluripotency [31]. Furthermore, Cripto-1 contributes 
to the tumorigenicity of invasive cancer cells with stem-like 
characteristics [36] and multiple groups have detected stem cell 
markers in Cripto-1-positive human cancer cells. Cripto-1 has 
been demonstrated to be a potential marker for the identification 
of CSCs in human malignant melanomas [37]. Strizzi et al, using 
Fluorescence-activated Cell Sorting (FACS),isolated from a 
human melanoma cell line a subpopulation of cells that expresses 
Cripto-1 on the cell surface and possesses stem-like characteristics 
[37]. Although the Cripto-1-positive subpopulation represented 
a relatively small fraction of the population, it showed a more 
spindle-shaped morphology, and exhibited increased expression 
of embryonic stem cell-associated transcription factors, such as 
Oct-4 and Nanog, as compared to the parental melanoma cells 
[37]. In another study, Cripto-1 was identified together with Oct-
4 and SUZ-12 in a small subpopulation of stem-like cells in both 
hormone-responsive and non-responsive human prostate tumor 
cells [38]. Furthermore, Watanabe and colleagues reported that 
Cripto-1 is heterogeneously expressed in human embryonal 
carcinoma (EC) cells, which are pluripotent stem cells derived 
from germ cell teratocarcinomas (the malignant counterpart 
of embryonic human stem cells).  In accordance with Cripto-1 
expression on the cell surface, two populations of EC cells were 
isolated that expressed high and low levels of Cripto-1. The 
Cripto-1 high subpopulation formed significantly more tumor 
spheres in vitro under serum-free conditions than the Cripto-1 
low-expressing cells. Additionally, by injecting Cripto-1 high 
expressing cells subcutaneously into nude mice, the authors 
observed that these cells were able to generate significantly 
larger tumors with shorter latency period when compared 
with tumors derived from Cripto-1 low expressing cells[39]. In 
addition, Cripto-1/GRP78 (heat shock 78kDa glucose-regulated 
protein) signaling has been suggested as an important pathway 
that regulates hematopoietic stem cell quiescence [40]. Under 
hypoxic conditions, Cripto-1 expression was essential in 
regulating the lineage specification of a CD34/GRP78 myeloid 
progenitor population in the hematopoietic stroma niche of the 
bone marrow [40]. Finally, the Nodal/Cripto-1 signaling pathway 
has been shown to maintain self-renewal and in vivo oncogenic 
capacity of pancreatic CSCs [41]. Inhibition of this signaling by 
blocking the Alk4/7 receptor reversed the chemoresistance of 
orthotopically engrafted pancreatic CSCs, suggesting a novel 
therapeutic approach to target pancreatic CSCs. All these novel 
findings suggest that Cripto-1 may represent an important 
marker for the identification of a cancer cell subpopulation with 
stem-like properties within aggressive tumors that are resistant 
to conventional therapy.

MULTIPLE MODALITIES TO TARGET CRIPTO-1
As Cripto-1 may be expressed in a population of CSCs and 

contribute to CSC self-renewal and EMT, it is potentially an 
attractive therapeutic target.  Beyond the potential role of Cripto-1 
in the induction or maintenance of CSCs, the role of Cripto-1 in 
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the tumor microenvironment makes it a potential therapeutic 
target since it also assists in sustaining the niche in which the 
tumor thrives. Our laboratory and others have successfully 
targeted Cripto-1 in vitro in various types of cancer cell lines and 
in vivo in several types of xenograft tumor model systems thereby 
abrogating its effects on tumor growth and metastasis [36].  
There are various methods that have been shown to counteract 
the oncogenic effects of Cripto-1 by targeting either Cripto-1 
mRNA or protein.  Interference of Cripto-1 expression has been 
effective by using antisense oligonucleotides against Cripto-1 in 
vitro in breast, colon and ovarian cancer cells, and in vivo in colon 
cancer xenografts [42-45]. Recently, it has been shown that micro 
RNAs (miRNA), small non-coding RNA molecules that inhibit 
mRNA translation, are involved in the regulation of Cripto-1 
expression.  In particular, miR-15a -16 was shown to down-
regulate Cripto-1 expression and disrupt Cripto-1-mediated 
invasion of non-small cell lung cancer cells (NSCLC) in vitro [46].  
Also, miR-15a -16 was able to reduce the tumor volume of NSCLC 
xenograft tumors [46].  Using proper delivery systems, this 
strategy could prove useful in targeting Cripto-1 expressing cells 
refractory to normal therapy.Cripto-1-neutralizing monoclonal 
antibodies and small molecule compounds that target the various 
domains of Cripto-1 have shown to be efficacious by inhibiting 
the proliferation of multiple cancer cell lines, blocking the growth 
of tumor xenografts, enhancing the effects of chemotherapeutic 
regimens and inducing apoptosis [47-51].   Antibodies directed 
against the EGF-like domain of Cripto-1 have prevented the 
activation of Smad signaling by interfering with Nodal-mediated 
Alk4 activation [48].  Antibody neutralization of the EGF-domain 
and its interactions can also impair the activation of Akt leading 
to apoptosis as seen in a multi-drug resistant leukemia model 
[49].  An antibody directed against GRP78 is also able to prevent 
Cripto-1-mediated activation of MAPK and Akt [52].  Antagonists 
of Cripto-1’s CFC domain, such as monoclonal antibodies[47], 
Alantolactone (a natural small molecule compound) [53], and 
a synthetic Cripto-1-binding peptide [54] have been shown to 
disrupt Cripto-1/Nodal binding and suppress Cripto-1-mediated 
inhibition of TGF-β/Active in growth inhibition.  Also, a kinase-
deficient soluble version of Alk4 has recently been shown to be 
efficacious in blocking Cripto-1 activation of Akt [55].  Cripto-1 as 
a possible marker for CSCs provides the potential of specifically 
delivering nanomedicines to Cripto-1-expressing cells using non-
neutralizing Cripto-1 antibodies, similar to a recently concluded 
phase I clinical trial using a cytoxin-conjugated antibody directed 
against the amino-terminal region of Cripto-1[50], thereby 
eliminating Cripto-1-positive CSCs.

Taken together, these data show that targeting Cripto-1 in 
a therapeutic setting can be quite advantageous due to its role 
in multiple processes of tumor formation and metastasis. The 
combination of therapies directed against Cripto-1 along with 
treatments against the bulk tumor could provide not only success 
against a primary tumor, but prevent metastasis and relapse.
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