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Abstract

This paper is concerned with a synthesis study of the fast Fourier transform (FFT), 
the short time Fourier transform (STFT and the Wigner distribution (WD) in analysing 
the phonocardiogram signal (PCG). The FFT (Fast Fourier Transform) can provide a 
basic understanding of the frequency contents of the heart sounds and can obtained 
by calculating the Fourier transform of a sliding windowed version of the time signal 
s(t). The location of the sliding window adds a time dimension and one gets a time-
varying frequency analysis. the Wigner distribution (WD) and the corresponding 
WVD (Wigner Ville Distribution) have shown good performances in the analysis of 
non-stationary signals. It is shown that these transforms provide enough features of the 
PCG signals that will help clinics to obtain qualitative and quantitative measurements 
of the time-frequency PCG signal characteristics and consequently aid to diagnosis. 
Similarly, it is shown that the frequency content of such a signal can be determined by 
the FFT without difficulties.

INTRODUCTION
Heartbeat sound analysis by auscultation is still insufficient 

to diagnose some heart diseases. It does not enable the analyst 
to obtain both qualitative and quantitative characteristics of 
the phonocardiogram signals [1,2]. Abnormal heartbeat sounds 
may contain, in addition to the first and second sounds, S1 and 
S2, murmurs and aberrations caused by different pathological 
conditions of the cardiovascular system [2,3]. Therefore, clinic 
capabilities to diagnose heart sounds are limited.

The sound emitted by a human heart during a single cardiac 
cycle consist of two dominant events, known as the first heart 
sound S1 and the second heart sound S2 (Figure 1), S1 relates to 
the closing of the mitral and tricuspid valves whilst S2 is generated 
by the halting of the aortic and pulmonary valves leaflets [1]. S1 
corresponds in timing to the QRS complex in “electrocardiogram 
(ECG)” and S2 follows the systolic pause in the normal cardiac 
cycle. Heartbeat sound analysis by auscultation only is still 
insufficient to diagnose some heart diseases. It does not enable the 
analyst to obtain both qualitative and quantitative characteristics 
of S1 and S2 of the phonocardiogram [1-2]. Moreover, in studying 
the physical characteristics it is seen that the human ear is poorly 
suited for cardiac auscultation [3]. Therefore, clinic capabilities 
to diagnose heart sounds are limited. In this paper we are 
interested in the study of the physical characteristics of the 
second heart sound S2 which consist of two major components 
in the spectrum of the signal. One of these components A2 is due 

to the closure of the aortic valve and the other P2 is due to the 
closure of the pulmonary valve (Figure 1).

 The aortic component is loudest than the pulmonic 
component. It is discernible at all the auscultation sites. It is 
best heard at the right base, with the diaphragm of the chest 
piece firmly pressed, whereas the the pulmonic one may only 
be audible at the left base, with the diaphragm of the chest piece 
firmly pressed.

 The aortic component has higher frequency contents [4] and 
generally precedes the pulmonary component because in normal 

Figure 1 Correlation between the phonocardiogram signal (PCG) and the 
electrocardiogram signal (ECG).
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heart activity the aortic valve closes before the pulmonary valve. 
The difference of time occurrence between these valves activities 
is known in medical community [4-6] as split. However in many 
diseases [1] this order of time occurrence may be reversed and 
its delay varies. 

 The characteristics of the PCG signal and other features such 
as heart sounds S1 and S2 location; the number of components 
for each sound; their frequency content; their time interval; all 
can be measured more accurately by digital signal processing 
techniques.

 The FFT (Fast Fourier Transform) can provide a basic 
understanding of the frequency contents of the heart sounds. 
However, FFT analysis remains of limited values if the stationary 
assumption of the signal is violated. Since heart sounds exhibit 
marked changes with time and frequency, they are therefore 
classified as non - stationary signals. To understand the exact 
feature of such signals, it is thus important, to study their time – 
frequency characteristics.

 In fact the spectrogram (STFT) cannot accurately tack sudden 
changes in the time direction. To deal with these time changes 
properly it is necessary to keep the length of the time window 
as short as possible. This however, will reduce the frequency 
resolution in the time-frequency plane. Hence, there is a trade-
off between time and frequency resolution [6]. However the 
Wigner distribution (WD) and the corresponding WVD (Wigner 
Ville Distribution) have shown good performances in the analysis 
of non-stationary signals. This comes from the ability of the WD 
to separate signals in both time and frequency directions. One 
advantage of the WD over the STFT is that it does not suffer from 
the time-frequency trade-off problem. On the other hand, the WD 
has a disadvantage since it shows cross-terms in its response. 
These cross-terms are due to the nonlinear behaviour of the 
WD, and bear no physical meaning. One way to remove these 
cross-terms is by smoothing the time-frequency plane, but this 
will be at the expense of decreased resolution in both time and 
frequency [7]. 

 The WD method was applied to heart sound signal and it shows 
no success in displaying or separating the signal components in 
both the time and frequency direction [6], although it provides 
high time-and frequency- resolution in simple monocomponent 
signal analysis [8].

THEORETICAL BACKGROUND
Fourier transform (FT)

 In 1882, Joseph Fourier discovered that any periodic 
function could be represented as an infinite sum of periodic 
complex exponential functions [9][10]. The inclusive property 
of only periodic functions was later extended to any discrete 
time function. The Fourier transform (FT) [Fourier Transform] 
converts a signal expressed in the time domain to a signal 
expressed in the frequency domain. The FT is widely used and 
usually implemented in the form of FFT algorithm (fast Fourier 
transform). The mathematical definition of the FT is given below.

2( ) ( ) j ftX f x t dte− Π= ∫                           (1)

where t and f are respectively the time and frequency parameters. 

The time domain signal x(t) is multiplied by a complex exponential 
at a frequency f and integrate over all time. In other words, any 
discrete time signal may be represented by a sum of sines and 
cosines, which are shifted and are multiplied by a coefficient that 
changes their amplitude. X(f) are the Fourier coefficients which 
are large when a signal contains a frequency component around 
the frequency f. 

The peaks in a plot of the FT of a signal correspond to dominant 
frequency components of the signal. Fourier analysis is simply 
not effective when used on non-stationary signals because it does 
not provide frequency content information localized in time. Most 
real world signals exhibit non stationary characteristics (such as 
heart sound signals). Thus, Fourier analysis is not adequate.

Short-time Fourier transform (STFT)

The STFT is obtained by calculating the Fourier transform of 
a sliding windowed version of the time signal s(t). The location of 
the sliding window adds a time dimension and one gets a time-
varying frequency analysis. 

 The mathematical representation of STFT is :

2( , ) ( ) ( ) j ftS t f s w t de πτ τ τ
+∞

−

−∞

= −∫             (2)

where w(τ−t) it is the sliding window applied to the signal s(t),f is 
the frequency and t is the time. 

 The length of the window is chosen so that to maintain signal 
stationary in order to calculate the Fourier transform. To reduce 
the effect of leakage (the effect of having finite duration), each 
sub-record is then multiplied by an appropriate window and then 
the Fourier transform is applied to each sub-record. As long as 
each sub-record does not contain rapid changes the spectrogram 
will give an excellent idea of how the spectral composition of 
the signal has changed during the whole time record. However, 
there exist many physical signals whose spectral content is so 
rapidly changing that finding an appropriate short-time window 
is problematic, since there may not be any time interval for which 
the signal is stationary. To deal with these time changes properly 
it is necessary to keep the length of the time window as short 
as possible. This, however, will reduce the frequency resolution 
in the time-frequency plane. Hence, there is a trade-off between 
time and frequency resolutions.

Wgner Distribution function (WD)

 In contrast to the STFT, which is resolution limited either 
in time or in frequency (dictated by the window function), and 
suffers from smearing and side lobe leakage, the WD offers 
excellent resolution in both the frequency and time domains. The 
WD of two signals, x(t), y(t), is defined via,

2 2
( , ) ( ) *( )

j
W t x t y t de ωττ τω τ

+∞
−

−∞

= + −∫                 (3) 

 The auto WD is obtained when x(t) = y(t) = s(t), it is a bilinear 
function of the signal s(t). The WD, and can also be expressed as

2 2
( , ) ( ) *( )

j
S t s t s t de ωττ τω τ

+∞
−

−∞

= + −∫                 (4)
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where t and ω are respectively, the time and frequency variables, 
and * denotes the complex conjugate.

 The WD had shown good applications in the analysis of non-
stationary signal [11-13]. This comes from the ability of this 
method to separate signals in both time and frequency directions. 
The WD has a disadvantage that it is limited by the appearance 
of cross-terms. These cross-terms are due to the nonlinear 
behaviour of the WD, and bear no physical meaning. One way to 
remove these cross-terms is by smoothing the time-frequency 
plane [7], but this will be at the expense of decreased resolution 
in both time and frequency.

RESULTS AND DISCUSSION

Fast Fourier transforms application

The analysed PCG signals were uploaded to a database we 
used them directly without taking into account the specifics of 

this signals. An FFT algorithm is first applied to the PCG signal 
given in Figure1. The frequency spectrum illustrated in Figure 
4a shows that the normal PCG signal has a frequency content 
varying from around 40Hz up to 200Hz. The FFT can be applied 
to the first part of this signal to analyse the frequency content of 
S1 as shown in Figure 4b and then to the second half to analyse 
the frequency content of S2 as shown in Figure4c. A 512 points 
FFT is applied to S1 and S2. At this stage the sound S1 or S2 
cannot be separated. 

 In fact; the application of the FFT on heart sounds S1 and 
S2 after their separation or identification show that the basic 
frequency components are obviously detected by the Fourier 
transform. 

The spectrum of S1 has reasonable values in the range 10-
180Hz. The spectrum is distinctly resolved in time into two 
majors components (M1 and T1) while the most of the energy of 
these sounds appears to be concentrated. 

Figure 2 Frequency spectrum for the normal cardiac sounds and the sounds S1 and S2.
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Figure 3 Normal and abnormals cardiacs sounds and their frequency spectrum respectively.

 The two components A2 (due to the closure of the aortic 
valve) and P2 due to the closure of the pulmonary valve) of the 
second sound S2 are obvious in Figure 2c. The spectrum of the 
sound S2 has reasonable values in the range 50-250Hz. The 
spectrum for this sound is distinctly resolved in time into two 
major’s components (A2 and P2) as shown in Figure 3c.

 However the FFT analysis of S2 cannot tell neither which 
of A2 and P2 precedes the other, nor the value of the time delay 
known as the “split” which separate them. For a normal heart 
activity usually A2 precedes P2 and the value of the split is lower 
than 30ms. This time delay between A2 and P2 is very important 
to detect some pathological cases. The sound S2 seem to have 
higher frequency content than that of S1 as shown in Figure 4b 
and Figure 4c.

 The FFT is applied also to analyse fourth PCG signals one 
normal and three different marked pathological cases (the aortic-
insufficiency, the aortic-stenosis and the mitral-stenosis). These 
are illustrated in Figure 5 along with the normal PCG signal. The 
basic frequency content is obviously different from that of the 
normal PCG signal. It is clearly shown that there is great loss of 
frequency component in each of the pathological case with respect 
to normal case. In addition except the aortic- insufficiency case 
where we note the apparition of frequency component higher 
than 200Hz , the other cases (mitral-stenosis and aortic-stenosis) 
present a frequency spectrum limited to 200Hz. 

 The aortic-insufficiency and the aortic-stenosis are two 
pathological cases resulting from a severe organic attack, which 
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Figure 4 The STFT application of the normal PCG (N)
a) the normal PCG signal (N)
b) the spectrogram of the normal signal ( N)

generally involves a disappearance of the aortic component A2 of 
the sound S2. This shown in their corresponding PCG frequency 
responses illustrated in Figure 3, where we notice a lack in 
frequency contents in the range under 100Hz compared to the 
normal case, where there is much more frequency component 
in this range. On the other hand the mitral-stenosi is rather a 
severe attack of the mitral valves thus involving a presystolic 
reinforcement as well as a bursting of the sound S1.

 As the frequency extent of the sound S1 is less important 
than that of the sound S2, the spectral response of the PCG signal 
related to this pathological case is not much affected compared to 
that of the normal case as was the case in the aortic -insufficiency 
and aortic-stenosis 

 In conclusion, and by applying the spectral analysis to 
different PCG signals, we can affirm which of the sounds S1 or S2 
is directly concerned by the pathology, and more precisely which 
component of these sounds is affected.

 With regard to normal PCG the basic frequency components 
are obviously detected by the FFT but not the time delay between 
these components. In fact as it was shown for example in Figure 
3c, the components A2 and P2 of the second sound S2 is obvious. 
However the FFT analysis of S2 cannot tell what is the value of 
the time delay between A2 and P2. It is thus essential to look for a 
transform which will describe a kind of “time-varying” spectrum 
(Figures 2,3).

Short-time Fourier transforms application

 The normal phonocardiogram signal (Figure 4a) and the 
coarctation of the aorta (Figure 4a) are analyzed in this section. 
The coarctation of the aorta has been deliberately chosen here 
to evaluate the performance of the STFT analysis for it is very 
similar to the normal case. Figures 4a illustrate thus such a signal 
where we can notice that the temporal representation is almost 
similar to that of normal case given in Figure 4a.

Figure 4b and Figure 5b provide respectively the STFT 
application of the normal and the CA case. From these Figures 
we can see the difference of the time-frequency features between 
them. For the two cases (N and CA), the second sound (S2) is 
shown to have higher frequency content than of the first sound 
(S1) [14,15]. This expected since the amount of blood present in 
the cardiac chambers is smaller [16,17] (Figures 4,5)

We consider here two examples of the phonocardiogram 
signals with murmur: the pulmonary stenosis (PS: Figure 8a) 
with a systolic murmur and the aortic regurgitation (AR: Figure 
6a) with a diastolic murmur.

Figure 6b and Figure 7b shows respectively the STFT 
application of the PS and AR signals. We can notice that the 
frequency extent of the diastolic murmur of the AR case is highly 
(About 600Hz) than the systolic murmur of the PS case (about 
400 Hz). 

In this section we presents the experimental results of 
the short-time frequency transform application of the three 
followings groups of the PCG signals used. (Figure 6 – Figure 7)

Group 1: normal (N) or similar morphological signal (CA) ;

Group 2: opening snap (OS) and ejection click (EC);

Group 3: PCG signal with width murmur (PS and AR). 

Figure 8 provides a better representation of the results 
obtained concerning the frequency contents of the sounds and 
murmurs analysed. If under the normal conditions (N) or in the 
presence of similar signals (CA) the frequency content of the 
sound S2 is more significant than that of the sound S1. 

We noted that the light murmurs (OS, EC.) can influence the 
time-frequency content of the principal sounds S1 and S2 and 
have a frequency extent more significant than them.

 Finally in fact the width murmurs (PS and AR cases) present 
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Figure 5 The STFT application of the Coarctation of the aorta (CA)
a) the Coarctation of the aorta signal (CA)
b) the spectrogram of the signal CA

Figure 6 The STFT application of the pulmonary stenosis
a) The pulmonary stenosis signal (PS)
b) The spectrogram of the signal PS

a frequency extent very significant. Discrimination between the 
systolic and diastolic murmurs can be made starting from this 
frequency extent, diastolic murmurs thus having a frequency 
extent more significant than the systolic murmurs. In more these 
murmurs seem not too much not to affect the time-frequency 
content of the sounds S1 and S2

I left the black color in the figures to be able to give the nuance 
of the noises and the murmurs (Figure 8).

Wigner distribution application

 Figure 9 shows the WD application of the cardiac sound of 

the normal case (9a), the coarctation of the aorta (9b) and the 
innocent murmur (9c). One can notice here that the two principal 
components (A2 and P2) start to appear in the presence cross-
terms. The WD results may be improved by increasing the 
sampling rate of original signal,, but it still suffers from the cross-
terms problem because of the nonlinearity of the WD.

However the Wigner distribution (WD) has shown good 
performances in the analysis of non-stationary signals. This 
comes from the ability of the WD to separate signals in both time 
and frequency directions. One advantage of the WD over the 
STFT is that it does not suffer from the time-frequency trade-off 
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Figure 7 The STFT application of the aortic of the regurgitation
                 a) The aortic of the regurgitation signal (AR)
                 b) The spectrogram of the signal AR

Figure 8 Frequency extent of the three Groups of the PCG signals.

problem. On the other hand, the WD has a disadvantage since it 
shows cross-terms in its response. These cross-terms are due to 
the nonlinear behaviour of the WD, and bear no physical meaning. 
One way to remove these cross-terms is by smoothing the time-
frequency plane, but this will be at the expense of decreased 
resolution in both time and frequency (Figure 9).

CONCLUSION
The cardiac (heartbeat sound) cycle of phonocardiogram 

(PCG) is characterized by transients and fast changes in frequency 

as time progresses. It was shown that basic frequency content of 
PCG signal can be easily provided using FFT technique. However, 
time duration and transient variation cannot be resolved; the 
CWT wavelet transform therefore i is a suitable technique to 
analyses such a signal. It was also shown that the coefficients of 
the continuous wavelet transform give a graphic representation 
that provides a quantitative analysis simultaneously in time and 
frequency. It is therefore very helpful in extracting clinically 
useful information.

The measurement of the time difference between the A2 and 
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Figure 9 The wigner distribution of the second cardiac sound S2 
a) the normal case b) the coarctation of the aorta case (CA), c) the innocent murmur case (IM)

P2 components in the sound S2, the number of major components 
of the sounds S1 and S2 and the frequency range and duration for 
all these components and sounds can be accurately achieved for 
the CWT simultaneously as was clearly illustrated. 

It is found that the wavelets transform is capable of detecting 
the four major components of the first sound S1 and the two 

components (the aortic valve component A2 and the pulmonary 
valve component P2) of the second sound S2 of a normal PCG 
signal. These components are not accurately detectable using 
the STFT or WD. However the standard FFT can display the 
frequencies of the components A2 and P2 but cannot display the 
time delay between them.
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The application of the STFT in the analysis of the PCG signals 
made it possible to obtain appreciable information on the time-
frequency content of the sounds S1, S2 and of the added murmurs 
(OS,EC or width murmurs). 

If under the normal conditions (N) or in the presence of 
similar signals (CA) the frequency content of the sound S2 is 
more significant than that of the sound S1. We noted that the light 
murmurs (OS, EC.) can influence the time-frequency content of 
the principal sounds S1 and S2 and have a frequency extent more 
significant than them.

Finally in fact the width murmurs (PS and AR cases) present 
a frequency extent very significant. Discrimination between the 
systolic and diastolic murmurs can be made starting from this 
frequency extent, diastolic murmurs thus having a frequency 
extent more significant than the systolic murmurs. In more these 
murmurs seem not too much not to affect the time-frequency 
content of the sounds S1 and S2.

The two version of analysis of the wavelet transform (DWT 
and PWT) make it possible to gather time-frequency information 
concerning the characteristics of the cardiac sounds.

It is shown that the FFFT, the STFT, the WD and the WT 
techniques provides more information of the PCG signals with 
murmurs that will help physicians to obtain qualitative and 
quantitative measurements of the time and the time-frequency 
PCG signal characteristics and consequently aid to diagnosis.
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