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Abstract

First described 20 years ago in patients with cancer, myeloid-derived suppressor 
cells (MDSCs) have not been extensively studied regarding their roles in infectious 
diseases. Here we summarize the recent findings about MDSCs in Pneumocystis 
pneumonia (PcP), the most common opportunistic infection in immune compromised 
patients. Previous studies as well as ongoing research focusing on the roles of MDSCs 
in the pathogenesis of PcP, and the development of novel treatment for PcP targeting 
MDSCs are reviewed.

Myeloid-Derived Suppressor Cells (MDSCs)

MDSCs are a heterogeneous population of myeloid progenitor 
cells and immature myeloid cells that have the morphology similar 
to that of granulocytes or monocytes. In healthy individuals, 
immature myeloid cells are generated in the bone marrow and 
quickly differentiate into mature granulocytes, macrophages, 
or dendritic cells. Immature myeloid cells are generally absent 
in peripheral lymphoid organs. MDSCs were first described 
more than 20 years ago in tumor-bearing mice and in patients 
with cancer as immune suppressor cells that inhibit T-cell 
proliferation and functions. In mice, MDSCs are characterized 
by co-expression of the myeloid-cell lineage differentiation 
antigen Gr-1 and CD11b. In rats, MDSCs are characterized by 
co-expression of His48 and CD11bc [1]. In humans, MDSCs are 
most commonly defined as CD14–CD11b+ cells that express 
the common myeloid marker CD33 but lack the expression of 
markers of mature myeloid and lymphoid cells, and of the MHC 
class II molecule HLA-DR. CD33 negative MDSCs have also been 
described in human peripheral blood [2].

The suppressive activity of MDSCs has been associated 
with the metabolism of L-arginine, which is a substrate for two 
enzymes, iNOS and arginase 1. MDSCs express high levels of both 
arginase 1 and iNOS, and inhibit T-cell function by depleting 
environmental L-arginine and producing immunosuppressive 
substances such as Nitric Oxide (NO) and Reactive Oxygen 
Species (ROS) [3]. Most of current understandings about MDSCs 
are derived from the studies in cancer-associated conditions, 
although MDSCs have been shown to accumulate in many other 
pathological conditions such as traumatic injury and various 
infections. Relatively few studies have been focused on the roles 
of MDSCs in infectious diseases.

MDSCs in Pneumocystis pneumonia (PcP)

PcP, the most common opportunistic disease in immune 
compromised patients such as those with AIDS, is caused by a 
fungal pathogen Pneumocystis jirovecii. P. carinii refers to the major 
form of Pneumocystis found in rats. Mouse Pneumocystis is called 
P. murina. Pneumocystis (Pc) infections usually result in a severe 
inflammatory damage to the lung. Adjunctive corticosteroid 
therapy has been shown to alleviate the inflammation and 
improve the survival of AIDS patients with PcP [4,5]. Alveolar 
macrophages (AMs) are the major cell type responsible for the 
clearance of Pneumocystis organisms. Our previous studies 
have shown that AMs are defective in phagocytosis, and that 
their number is decreased during PcP [6,7]. The mechanism 
through which Pc infection causes AM defects is unknown, but 
is associated with down-regulation of phagocytic receptors such 
as Dectin-1[8].

Recently, our study demonstrates that MDSCs accumulate 
in large numbers in the lungs of mice and rats with PcP [9]. 
Accumulation of MDSCs in human lungs during PcP has also been 
suggested by the presence of a population of CD33-/HLADR-/
CD15+ granular cells in bronchoalveolar lavage fluid (BALF) 
(unpublished data). MDSCs in PcP morphologically resemble 
granular cells, demonstrate high levels of arginase I and iNOS 
expressions, and are able to inhibit T-cell proliferation in 
response to stimulants. MDSCs cause direct injury to the lungs, 
indicated by increased albumin and LDH levels in BALF caused 
by adoptive transfer of MDSCs from PcP mice to healthy hosts 
[9]. MDSCs also play immunosuppressive roles during PcP by 
suppressing AM phagocytic activities. Co-incubation of MDSCs 
with normal AMs leads to down-regulation of PU.1 (unpublished 
data), which is known to cause the down-regulation of phagocytic 
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receptor Dectin-1 in AMs [8]. Evidences from our ongoing study 
suggest that MDSCs inhibit PU.1 expression in AMs through the 
PD-1/PDL-1 signaling (unpublished data).

Given both the direct lung injury and the immunosuppressive 
roles of MDSCs during PcP, treatment strategies targeting MDSCs 
have been developed using all-trans retinoic acid (ATRA) alone 
or in combination with other antimicrobials. ATRA is one form of 
vitamin A-derived retinoids, which has been shown to stimulate 
MDSCs to further differentiate to dendritic cells and macrophages 
[10,11]. Previous studies show that administration of therapeutic 
concentrations of ATRA can substantially decrease the number 
of MDSCs in tumor-bearing mice and in patients with cancer, 
improving their T-cell response to specific antigens [12,13]. Our 
recent study [14] shows that ATRA alone is able to eliminate 
MDSCs in the lungs, increase numbers of AMs and control Pc 
infection. Combination of ATRA with primaquine is as effective 
as the traditional treatment combination of trimethoprim 
and sulfamethoxazole (TMP-SMX) in mice and rats with PcP. 
Currently, TMP-SMX remains the single most effective regimen 
for treatment of human PcP. Unfortunately, approximately 
10% of people in the general population are allergic to sulfa-
containing drugs, and about 50% of AIDS patients fail therapy 
with TMP-SMX. Other alternative regimens are available but 
not as effective. Once the treatment combination of ATRA and 
primaquine is proved effective in treating and preventing human 
PcP, it will make tremendous improvements in the care of 
immune compromised patients. This novel approach treats PcP 
by converting immune suppressive cells to immune protective 
ones so that the hosts became able to effectively defend the 
infection. It may also serve as a model for development of new 
therapies for other microbial diseases, such as toxoplasmosis 
[15], leishmaniasis [16], and candidiasis [17], that also cause 
MDSC accumulations. The mechanism through which ATRA 
induces MDSC differentiation needs further investigation.
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