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Abstract

Protein-protein interactions, which result in either transient or long-lived complexes, 
play a central role in the processes happening in the cells. Perturbations in those 
interaction networks can lead to disease. Understanding the mechanisms of protein-
protein binding is inherently difficult due to the range of potential interactions, the 
molecular rearrangement associated with binding, and the time and length scales 
involved. In silico protein docking is a valuable tool in determination of the structures 
of protein–protein complexes that complements experimental methods with a level 
of details that are unattainable in experiment. Although the precise prediction of the 
structure of protein-protein complex is sufficient to describe the interaction in atomic 
details, it is the knowledge of affinity of the components for each other is necessary 
for the prediction of the existence of this assembly and whether it is transient or 
permanent. Recently, a structure-based binding affinity benchmark Version 1.0, 
which includes a non redundant set of 144 protein–protein complexes that have high-
resolution structures available for both the complexes and their unbound components, 
and for which dissociation constants have been measured by biophysical methods, and 
the updated version, which contains 179 entries, have been presented. Because for all 
protein complexes in this benchmark the unbound structures of component proteins are 
available, these benchmarks allow for the assessment of conformational changes upon 
protein-protein binding. We use this assessment together with experimental data to 
explain failures and successes in prediction structures and affinity by in silico docking 
using the combination of rigid docking and RosettaDock refinements.

ABBREVIATIONS
FFT: Fast Fourier Transform; PRE: Paramagnetic Relaxation 

Enhancement; NMR: Nuclear Magnetic Resonance; PLS: Partial 
Least Squares; SVM: Support-Vector Machine; GP: Gaussian 
Process; RMSD: Root-Mean- Square-Deviation

INTRODUCTION
Relating structure to function is a major objective of structural 

biology. Although current structural biology tools have broaden 
essentially our knowledge in structures, dynamics and functions 
of individual proteins, the situation differs significantly in the case 
of protein-protein complexes while protein-protein interactions 
that result in either transient or long-lived complexes play a 
fundamental role in many biological functions and sometimes 
also result in diseases. Understanding the mechanisms of 
protein-protein binding is inherently difficult due to the range of 
potential interactions, the molecular rearrangement associated 
with binding, and the time and length scales involved. Physical–
chemical and structural studies of molecular recognition between 

proteins are essential to understand protein function and hence 
life processes. Given the experimental difficulties for having 
information on protein–protein interactions at atomic level, 
computational docking is increasingly used as a complementary 
tool to predict the structure of a specific complex formed by two 
given interacting proteins. Although in recent years the field has 
experienced a rapid improvement, major challenges remain, such 
as the treatment of flexibility and reliable scoring (see recent 
reviews on protein–protein docking [1-8]). Most of the available 
docking methods treat the interacting proteins as rigid bodies 
during the whole process, or at least in a first stage. The majority 
of rigid-body docking methods are based on an exhaustive 
sampling of the rotational and translational space in search for 
geometric surface correlation mainly through FFT (Fast Fourier 
Transform), spherical polar Fourier, or geometric hashing 
algorithms. Although the precise prediction of the structure of 
protein-protein complex is sufficient to describe the interaction 
in atomic details, it is the knowledge of affinity of the components 
for each other is necessary to predict whether the assembly 
actually exists under a given condition of temperature, pH, and 
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protein concentration, and whether it is transient or permanent. 
Even if docking methods are highly promising tools for modeling 
protein-protein complexes, they do not yet allow a reliable 
estimation of the binding affinity of the complex and successful 
docking procedures often give equally good scores for proteins 
that do not interact experimentally [9]. Therefore, the design of 
ideal computational tools for protein-protein complex modeling 
that would also predict the binding affinity of a complex is one of 
the challenges in structural bioinformatics. Such computational 
tools would open the route to in silico, large-scale annotation and 
prediction of complete interactomes. 

The process of protein-protein complex formation comprises 
at least two steps [10]. During an initial diffusive approach 
possibly guided by electrostatic interactions the proteins 
encounter each other many times before an intermediate loosely 
bound state near the native binding geometry is reached [10] 
(also termed ‘encounter complex’). Upon formation of additional 
interactions and conformational changes at the interface regions 
the partners form the native complex with often (but not always) 
a high steric interface complementarity. The nature of the 
encounter state has been elusive for a long time, due to a lack 
of experimental methods to probe it [11]. Recently, new tools 
to study this preliminary step in complex formation have been 
reported that changed the view of this state and of proceeding 
from the encounter complex towards the final structure. The 
major progress is due to the application of NMR paramagnetic 
relaxation enhancement (PRE), a technique that is exquisitely 
sensitive to the presence of lowly populated states in the fast 
exchange regime [12-14].

Recently, a structure-based affinity benchmark of Kastritis 
et al (version 1.0), which includes a non redundant set of 144 
protein–protein complexes that have high-resolution structures 
available for both the complexes and their unbound components, 
and for which dissociation constants have been measured 
by biophysical methods [15], has been presented and very 
recently its updates by Vreven et al. (structure-based affinity 
benchmark version 2.0) has been reported [16]. Because for all 
these complexes the unbound structures of component proteins 
are available, these two benchmarks allow for the assessment 
of conformational changes upon protein-protein binding. 
We use the data from these benchmarks together with other 
experimental and theoretical data to gain structural insights into 
failures and successes in a structure and affinity prediction by in 
silico docking. 

Protein-protein association. What rigid-body docking 
models describe? 

The structure of a protein complex together with information 
about its affinity and other thermodynamic characteristics 
provide a “frozen” view of the complex and ignores the kinetic 
nature of protein-protein association. Since all interactions 
are of relatively short range, proteins, before their association, 
diffuse randomly in solution performing Brownian motion until 
they reach an area, known as “the steering region” or “long-
range electrostatic steering region”, where mutual electrostatic 
attraction leads them to a ‘macrocollision’, resulting sometimes in 
the formation of a specific low-free energy encounter complexes 

[10,17-19]. The nature of these encounter complexes has been a 
matter of considerable research and debates [11, 20]. However, 
the encounter complex structures and configurations were elusive 
over many years to conventional structural and biophysical 
methods because their populations are low, their lifetimes 
are short, and they are difficult to trap. Considerable progress 
has been achieved with application of novel experimental and 
improved computational methods, developed during the last 
decade. One of the most promising approaches for studying the 
formation of encounter complexes is ‘paramagnetic relaxation 
enhancement’ (PRE) [12-14]. In this technique certain areas in 
one of the proteins are labeled with magnetic particles, which 
produce signals when the two proteins are close to each other. 
Repeating the measurement several times with the magnetic 
particles in different positions provides information about 
the overall structure of the complex. Computational modeling 
can then be used to work out the fine details of the structure, 
including the shapes of the intermediate structures made by the 
proteins as they interact. 

Encounter complexes are best described as low free energy 
ensembles of states that are close to the final complex and in 
which the two molecules can rotationally diffuse along each 
other, or participate in a series of ‘microcollisions’ that properly 
accommodate the reactive surface groups (Figure 1) [11,20]. 
The encounter complexes are stabilized by a combination of 
electrostatic forces and desolvation, and are destabilized by 
unfavorable entropy. Specific short-range interactions do not 
seem to play an important role at this stage [10]. The formation 
of the final complex from the encounter complex requires 
desolvation and structural rearrangement of the side chains, thus 
lowering further the free energy of interaction (Figure 1). The 
macrocollisions that result in the formation of encounter complex 
seem at first glance as not requiring interaction forces between the 
macromolecules. However, the lifetime of such a macrocollision 
will often not be sufficient for a macromolecule to find a small 
binding site on the partner and the fraction of macrocollisions 
that results in a productive complex will be small. Electrostatic 
interactions have long been recognized as the dominant factor 
used by Nature in order to enhance protein association beyond 

Figure 1 Successive steps in a possible mechanism for protein–protein 
association, compatible with PRE data. A:BES stands for ensembles of 
encounter complexes between proteins A and B. Formation of transient 
encounter complexes is executed by nonspecific collisions, guided 
mostly by electrostatic interactions. Many encounter complexes 
separate rapidly. Some productive encounter complexes (A:BES,prod) 
reorient and come closer to the final, specific orientation with final 
fitting of interacting surfaces (AB), guided mostly by desolvation, as 
water molecules move away from the protein surfaces. 
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the basal rates dictated by diffusion [10]. In the diffusional 
search, it is well known from kinetics studies that components 
that have charge complementarity and a strong dipole associate 
much faster than would be expected from random diffusional 
encounters. This is most readily visualized simply as a ‘funnel’ 
in the spatial and orientational degrees of freedom, directing the 
incoming component towards the interface that will bind it and 
orientating it correctly. The association of a pair of proteins can 
be described as a two-step reaction:

1 2

1 2

A : B
k k

k k
A B AB→ →

← ←

− −

+

Where A and B are the free proteins, A:B is the encounter 
complex, and AB is the final complex. According to this scheme, 
the first step includes Brownian diffusion, macrocolision and the 
formation of the encounter complex (complexes). The second 
step of association consists of conformational rearrangements to 
the final complex. The macroscopic rate constant for formation of 
the productive complex is kon=k1k2/(k-1+k2), and for dissociation, 
koff=k-1k-2/(k-1+k2) [10]. In (Figure 2) energy diagrams are shown 
to illustrate various possibilities. The encounter complex is 
often thought of as an ensemble of conformations (‘encounter 
complexes’) in which the two molecules can rotationally diffuse 
along each other, or participate in a series of ‘microcollisions’ 
that properly accommodate the reactive surface groups. 

It is well known that, for most protein a global search via 
rigid docking gives low energy structures in several regions 
of the conformational space, some of which are far from the 
structure of the native complex. Physics-based energy functions 
are expected yet to be globally valid for modeling interactions 
between proteins, including the non-native states. Thus, one can 
assume that the rigid-body solutions with the energy values that 
are low relative to the average energy but still exceed the energy 
at the global minimum may represent relatively short-lived 
encounter complexes along the association pathways. Recently, 
exhaustive sampling of the conformational space in protein-
protein association using a physics-based energy function has 

been carried out [21]. The study has shown the agreement 
between experimental PRE data and theoretical PRE profiles 
calculated from the ensemble of structures generated by docking 
thus confirming the hypothesis that the structures of encounter 
complexes can be obtained simply as byproducts of docking. 
While this result seems not unexpected, in view of the limited 
structural information available on encounter complexes it is of 
great practical significance. 

Predicting protein–protein affinity

Protein docking is generally applied to individual pairs 
of proteins that are known to interact, to model the three-
dimensional structure of the complexes they form. Docking 
programs usually comprise two standard steps: generation of 
thousands of alternative poses to sample all possible interaction 
modes, followed by scoring these poses using a ‘pseudo-energy’ 
function. A set of solutions is generated by the first step, 
containing often near-native solutions, but scoring functions 
often fail to rank them properly and pick out truly best poses 
[9]. Yet, the potential to use protein docking algorithms to infer 
protein–protein binding affinities has long been used and a 
number of algorithms have been proposed to relate the binding 
affinity of two proteins to the structure of their complex. These 
algorithms vary dramatically from one another in terms of their 
physical relevance, accuracy and computational cost. Exact 
methods such as free energy perturbation and thermodynamic 
integration [22], and free energy pathway methods such as 
the linear interaction energy (LIE) and molecular mechanics 
Poisson-Boltzmann surface area (MM-PBSA) methods [23] are in 
principle highly accurate. However, because they use extensive 
molecular dynamics or Monte Carlo simulations their application 
is extremely limited and is usually only applicable where the 
bound and unbound states have significant overlap. Empirical 
energy functions are much faster, and either take into account the 
physical chemical properties of the interface between subunits, 
and assess the free energy of their interaction, or they use 
statistical potentials, or they rely on empirical scoring functions 
developed for protein–protein docking and use linear regression 
to obtain a weighted function of physical or knowledge-based 
terms, although machine-learning algorithms have been applied 
as well [24-30]. Such models can also use biological information 
on the conservation of the protein sequence or the effect of 
point mutations. Horton and Lewis obtained a high correlation 
coefficient of 0.96 with experimental measurements, using only 
three terms in a linear combination [24]. Later works using 
different methods and datasets also reported high correlation 
coefficients, ranging up to 0.95 values [25-30]. However, as 
outlined in several recent papers, these high accuracy predictions 
are due to limitations in the data sets used for training and 
testing the algorithms [9]. When a large number of approaches 
were tested on a larger and more reliable dataset no correlations 
higher than 0.53 was observed. A community-wide effort on 
the computational discrimination between binding and non-
binding protein pairs highlighted the critical role that the dataset 
plays for a balanced assessment of the methods [9,31]. Docking 
algorithms compute the structure of protein complexes, so in 
principle, they should be able to distinguish pairs of proteins by 
their binding affinities. However, given their poor performance 
in ranking correct conformations, it has widely been thought 

Figure 2 Energy diagrams. A: Final complex which is reached without 
favorable electrostatic forces and without formation of transient 
(encounter) complexes between the proteins. B: Final complex 
formed due electrostatic attraction without formation of encounter 
complexes; C: Proceeding to a stable final complex (AB) through 
formation of encounter complex (A:B); D: Like C, with a high-energy 
barrier between encounter complex and the final complex. The 
proteins can get trapped in a non-productive local energy minimum 
(non-productive encounter complex). 
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that docking programs are not yet accurate enough to predict 
binding affinities [9]. The main molecular origin why current 
models are limited in predicting binding affinities is thought to 
be a conformational flexibility of binding proteins [32].

In recent years several new affinity prediction algorithms 
have been proposed. The pyDock [33] uses a simple approach to 
scoring of rigid-body docking poses, which is based on Coulombic 
electrostatics with distance dependent dielectric constant, and 
implicit desolvation energy with atomic solvation parameters 
previously adjusted for rigid-body protein-protein docking. This 
scoring function is not highly dependent on specific geometry of 
the docking poses and therefore can be used in rigid-body docking 
sets generated by a variety of methods. The protocol has been 
tested in a large benchmark set of 80 unbound docking cases. The 
method was able to detect a near-native solution from 12,000 
docking poses and place it within the 100 lowest-energy docking 
solutions in 56% of the cases, in a completely unrestricted manner 
and without any other additional information. More specifically, 
a near-native solution will lie within the top 20 solutions in 37% 
of the cases. 

The original program ZDOCK performed a grid-based docking 
search using Fast Fourier Transform (FFT), and its scoring 
includes desolvation, electrostatics, and a shape complementarity 
function. The current ZDOCK approach [34] executes efficient 
global search with rescoring and refinement, by combining the 
tools ZDOCK, ZRANK and RosettaDock. The combination of these 
techniques has led to increased success on a docking benchmark 
and suggests that this is a promising avenue for further improving 
protein complex prediction success.

The SIPPER [35] (scoring by intermolecular pairwise 
propensities of exposed residues) scoring uses statistical 
potentials extracted from intermolecular pairs of exposed 
residues in known complex structures, which were then used 
to score protein-protein docking poses. SIPPER combines the 
value of residue desolvation based on solvent-exposed area with 
the propensity-based contribution of intermolecular residue 
pairs. This scoring function has found a near-native orientation 
within the top 10 predictions in nearly one-third of the cases 
of a standard docking benchmark and proved to be also useful 
as a filtering step, drastically reducing the number of docking 
candidates needed by energy-based methods like pyDock.

Moal et al have proposed a QSAR-like approach MARS 
(Multivariate Adaptive Regression Splines) [36] based on a 
large set of molecular descriptors using commonly available 
tools, introducing the use of energetic factors associated with 
conformational changes and disorder to order transitions, 
as well as features calculated on structural ensembles. The 
descriptors were used to train and test a binding free energy 
model using a consensus of four machine learning algorithms, 
whose performance constitutes a significant improvement over 
the other state of the art empirical free energy functions tested. 

ZAPP (Zlab Affinity for Protein–Protein interaction) predicts 
protein–protein binding free energies using a linear combination 
of nine energy terms and a constant [37]. Only one term uses the 
unbound structures in addition to the complex structures, while 
the other eight terms only require the complex structure.

SPA-PP (specificity and affinity of the protein–protein 
interactions) has been developed by incorporating both the 
specificity and affinity into the optimization strategy [38]. The 
authors of the method report testing results and comparisons 
with other scoring functions showing fine performance of the 
method on both predictions of binding poses and affinity.

Zhou et al have used a biomacromolecular QSAR (Bio 
QSAR) scheme with 101 structural descriptors categorized into 
five groups to extract abundant information from a protein–
protein interface: (1) constitutional descriptors (such as the 
numbers of different amino acids, groups and atoms present 
at the interface, the ratio of the residues at the interface to all 
residues in the complex, the quantity of hotspot residues, etc.) 
(2) Contacting descriptors (such as atomic contact vectors, 
residue pair numbers, residue interaction indices, empirical 
contact potentials, etc.) (3) Geometrical descriptors (such 
as the accessible surface area, interfacial connectivity index, 
interface volume, etc.) (4) physicochemical descriptors (such 
as electrostatic potential, interfacial polarity, molar refractivity, 
hydrophilicity/hydrophilicity, etc.) and (5) non bonded 
descriptors(such as the number of hydrogen bonds, hydrophobic 
forces, salt bridges, water-mediated hydrogen bonds, etc.) [39]. 
Three sophisticated regression methods, i.e. partial least squares 
(PLS), support-vector machine (SVM) and Gaussian process (GP), 
were employed to establish the linear and nonlinear correlations 
between the interface descriptors and binding affinity of the 144 
studied protein complexes from the structure affinity benchmark 
[15]. The modeling performance and predictive power of Bio 
QSAR were reported to be comparable to or even better than 
that of traditional knowledge-based strategies, mechanism-
type methods and empirical scoring algorithms, while Bio QSAR 
possesses certain additional features compared to the traditional 
methods, such as adaptability, interpretability, deep-validation 
and high-efficiency

The minimal affinity model of Janin takes into account only 
two structural features of the complex, the size of its interface, 
and the amplitude of the conformation change between the free 
and bound subunits [40].

Comparison of the Pearson coefficient R among several 
methods, where the same data set [15] was used is given in 
(Table 1).

Luo et al have carried out a systematic physico-chemical 
and conformational studies with interfaces involved in different 
PPIs, including crystal packing, weak transient heterodimers, 
weak transient homodimers, strong transient heterodimers 
and homodimers. The comparative analysis has shown that the 
interfaces tend to be larger, less planar, and more tightly packed 
with the increase of the interaction strength. Meanwhile the 
strong interactions undergo greater conformational changes 
than the weak ones involving main chains as well as side chains. 
Finally, using 18 features derived from such an analysis, a 
support vector regression model was developed to predict the 
binding affinity [41].

SolveBind is a binding affinity prediction method based on 
the global surface model of Kastritis et al. [42], using information 
on the number of atoms in the interface (NAtomsINT) and the 
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percentages of charged and polar residues in the non-interacting 
surface (%AAcharNIS and %AApolNIS). Properties of the non-
interacting surface were found to correlate with affinity [42] and 
may regulate solvation and electrostatic contributions to binding 
affinity [42].

Shakhnovich et al have proposed a minimalistic solvation-
based model for predicting protein binding energy using the 
solvation factor described by a simple linear combination of 
buried surface areas according to amino-acid types [43]. The 
authors report that their minimalistic model demonstrates a 
predictive power comparable to more complex methods, making 
the proposed approach the basis for high throughput applications.

Moal and Fernandez-Recio [44] have used atomic and residue 
contact potentials derived directly from experimental binding 
free energy changes following mutation. The first set of potentials 
is obtained by unweighted least-squares fitting and bootstrap 
aggregating. The second set is calculated using a weighting 
scheme optimized against absolute binding affinity data, so as 
to account for the overrepresentation of certain complexes, 
residues, and families of interactions. More recently Fernandez-
Recio and coworkers proposed a simplified model (‘surface 
energy model’) also parameterized using empirical changes in 
free energy upon mutations [45]. The model correlates well with 
empirical binding free energies of a functionally diverse set of 
rigid-body interactions (r = 0.66). When used to rerank docking 
poses, it could place near-native solutions in the top 10 for 37% 
of the complexes evaluated, and 82% in the top 100. The method 
shows that hydrophobic burial is the driving force for protein 
association, accounting for 50-95% of the cohesive energy

FireDock [46] is an efficient method for the refinement and 
rescoring of rigid-body docking solutions. The refinement process 
consists of two main steps: (1) rearrangement of the interface 
side-chains and (2) adjustment of the relative orientation of 
the molecules. The method accounts for the observation that 
most interface residues that are important in recognition and 
binding do not change their conformation significantly upon 
complex formation. While allowing full side-chain flexibility is a 

common procedure in many refinement methods, often causing 
excessive conformational changes and distorting preformed 
structural patterns, which have been shown to be important for 
binding recognition, FireDock restricts side-chain movements, 
and thus manage to reduce the false-positive rate noticeably. In 
the later stages of FireDock procedure (orientation adjustments 
and scoring) it smooths the atomic radii. This allows for the 
minor backbone and side-chain movements and increases the 
sensitivity of the algorithm. FireDock succeeded in ranking a 
near-native structure within the top 15 predictions for 83% of 
the 30 enzyme-inhibitor test cases, and for 78% of the 18 semi 
unbound antibody-antigen complexes.

Very recently Vangone and Bonvin have demonstrated that the 
network of inter-residue contacts (IRCs) between two interacting 
proteins is a good descriptor for the binding affinity [47]. Using 
the structure-based binding affinity benchmark of Kastritis et 
al. [15] and removing the cases with ambiguity in the exact Kd 
values and all complexes with missing or unresolved residues 
(>2) at the interface it has been observed a good correlation 
between IRCs and experimentally determined binding affinity 
data (Kd or ΔG) for protein complexes (bound forms). The most 
relevant contributions to BA are the number of IRCs made by 
charged and polar residues (IRCs_charged/charged and IRCs_
polar/polar), while the apolar residues are only counted when 
interacting with charged and polar ones (IRCs_charged/apolar 
and IRCs_polar/apolar). A model combining IRCs contribution 
and that of non-interacting surfaces (IRCs/NIS-based model) 
has been reported to possess the best performance of any model 
developed so far, with R=−0.73 and RMSE=1.89 kcal mol-1 [47]. 
The correlation between the number of interfacial contacts and 
binding affinity is consistent both with the previously reported 
evidence that interfaces with a significant interaction strength 
are large and tightly packed [48] and with the simple BSA models 
introduced by Chothia and Janin [49] and Horton and Lewis [24]. 
Although BSA and the number of contacts at the interface are of 
course somewhat related, Vangone and Bonvin have shown that 
the number of interface contacts shows much better correlations 
with binding strength than the BSA. The comparison of the 
performance of 16 different predictors given in this work is 
presented in (Figure 3).

Recently Erijman et, basing on the same benchmark of 
Kastritis et al [15], have carried out the exploration how different 
biophysical features derived from a protein-protein structure 
correlate with protein-protein binding affinity [55]. The features 
that showed the highest correlation with binding affinity were the 
total number of H bonds, geometric complementarity measured 
by the van der Waals energy, and side chain conformational 
changes for high-resolution X-ray structures [55]. 

Benchmarking RosettaDock with the last structure-
affinity Benchmark 1.0 of Kastritis et al [15]

Many protein docking algorithms are divided into several 
steps: the initial global search and subsequent steps to improve 
these initial predictions. The global search is a full search of the 
orientations of the two proteins, typically keeping the larger 
protein (referred to as the receptor) fixed, while moving the 
smaller protein (the ligand). This is often a rigid-body search 

Table 1: Comparison of the Pearson coefficient R among various 
methods, where the same data set [15] is used.
Method R Feature Ref.

ZAPP 0.63 Regression with nine 
terms [37]

MARS 0.52 Machine learning [36]

BIOQSAR 0.82 Machine learning [39]

SPA-PP 0.39 Statistical potential [38]

ROSETTADOCK 0.42 Regression with nine 
terms [53]

DFIRE 0.35 Statistical potential [52]
Minimalistic
Solvation-based 
Predictor

0.48 Solvation [43]

Minimal Model 
of Janin

0.63 for small 
I_rmsd BSA and I_rmsd [40]

BSA stands for ‘Buried Surface Area’
I_rmsd stands for Interface Root- Mean- Square - Deviation
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in six dimensions, utilizing a fast Fourier transform (FFT) for 
efficiency and softness for small overlaps [32]. Subsequently, 
one or more refinement and scoring steps of a set of preselected 
rigid docking solutions are added to achieve closer agreement 
with the native geometry and to recognize near-native docking 
solutions preferentially either as the best or among the best 
scoring complexes. The accuracy and speed of flexible refinement 
and rescoring of preselected docked protein structures are 
important for the success of the multistage docking protocol. 
A rescoring of docking decoys using more elaborate energy 
functions and filters has been shown to improve the selection 
of models [32]. Several strategies for scoring and structural 
refinement of docked complexes have been developed [56-
67]. In earlier works structural flexibility was treated by soft 
potentials [56], multicopy representations of side chains [57], or 
flexible loops [58,59], by using conjugate gradient minimization 
[60] followed by clustering to identify near-native structures. 
In an approach to refine a large number of complexes obtained 
by the FFT-based ZDOCK program [68] a combination of several 
descriptors showed significant improvement [65]. Often a single 
descriptor (e.g. surface complementarity) or a single binding 
energy component (e.g. vdWaals or electrostatic energy) is 
insufficient to distinguish near-native and non-native complexes. 
A combination of different surface and interface descriptors was 
found to be able to enrich the number of near-native solutions 
in the pool of best scoring docking solutions [36,47,55,65]. The 
increase in the number of experimentally solved protein–protein 
complex structures in recent years allows extraction of more 
data on the statistical residue and atom contact preferences at 
protein–protein interfaces. New effective knowledge-based 
scoring functions have been developed that are based on contact 
preferences of amino acids at known interfaces compared 
to interfaces of non-native decoy complexes [47, 64,65]. An 
iterative approach has been designed for the derivation of 

knowledge-based scoring functions that optimally distinguish 
between native binding modes and possible decoy poses [66]. 
The resulting distance dependent pair-potentials significantly 
improved scoring of near-native complexes for bound and 
unbound docking. 

One more possibility to directly use computationally rapid 
rigid docking algorithms is to indirectly account for receptor 
flexibility by representing the receptor target as an ensemble of 
structures. The structural ensemble can, for example, be a set of 
structures obtained experimentally (e.g. from nuclear magnetic 
resonance (NMR) spectroscopy) or can be formed by several 
structural models of a protein. Docking to an ensemble increases 
the computational demand and due to the large number of protein 
conformations may also increase the number of false positive 
docking solutions. A variety of ensemble-based approaches have 
been developed in recent years in the field of small-molecule 
docking (reviewed in [70]). Cross docking to ensembles from 
MD simulations have also been used to implicitly account for 
conformational flexibility in protein docking [71]. Mustard and 
Ritchie generated protein structures deformed along directions 
compatible with a set of distance constraints reflecting large-
scale sterically allowed deformations [72]. Subsequently, the 
structures were used in rigid body docking searches to identify 
putative complex structures. Conformer selection and induced-fit 
mechanism of protein–protein association have been compared 
by ensemble docking methods using the RosettaDock approach 
[73] that allows side chain and limited backbone relaxation during 
docking refinement [74]. The method was able to successfully 
select binding-competent conformers out of the ensemble based 
on favorable interaction energy with the binding partner [73].

In a recent paper of Kozakov et al it has been shown using 
Principal Component Analysis that the energy landscape 
of 42 interacting proteins, at least within the 10 Å IRMSD 

Figure 3 Comparison of the performance of different predictor models reported by Vangone and Bonvin [47], Moal et al [36]., and the CCHarPPI web 
server [50]. The performance is expressed as Pearson’s Correlation coefficient between experimental and predicted binding affinities. Predictions 
were made on the common set of 79 complexes. The considered models include: (1) the IRCs/NIS model of Vangone and Bonvin [47]; (2) the ‘global 
surface model’ of Kastritis et al [42]. (3) The BSA-based model of Horton and Lewis [24]; (4-6) the top three best performing models reported by 
Moal et al [36]. (their consensus model, DFIRE [51] and PMF [29]); the models based on composite scoring functions reported by the CCHarPPI web 
server [50], such as (7) ZRANK [34]; (8) ZRANK2 [34]; (9) RosettaDock [52]; (10) PyDock [33]; (11) SIPPER [35]; (12) PISA [53]; (13-15) FireDock, 
FireDock _AB and FireDock_EI, respectively [46]; (16) PIE [54].
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neighborhood of the native state, always includes a permissive 
subspace (‘tunnel’) along which the conformation of the complex 
can substantially change without crossing significant energy 
barriers and that the energy landscape is smooth funnel in a two 
dimensional permissive subspace [21]. In all cases this subspace 
captured at least 75% of the total motion as the two molecules 
approach the native state. For each of the 42 complexes a 
high energy subspace has been detected, which reduces the 
dimensionality of the space available to encounter complexes 
along the association pathways. This suggests that methods such 
as molecular dynamics (MD) or Monte Carlo (MC) simulations 
that start from productive encounter complexes should fairly 
quickly converge to native structures (or near-native ones 
because of some inaccuracy of scoring functions) making 
these strategies as promising tools of the efficient refinement. 
The Monte Carlo approach is especially attractive as being 
much less computationally expensive as compared with MD. 
Instead of screening all possible conformations with a Fourier-
transformable energy function, random starting decoys are 
refined by applying random translational and rotational moves 
and deciding on their acceptance using the Metropolis criterion 
[75,76]. While FFT methods have the advantage of great speed 
and complete sampling of the conformational space, Monte Carlo 
methods are able to generate more physical decoy distributions, 
can involve arbitrary energy functions, and might allow for 
structural flexibility.

Several docking protocols including rigid-body moves and 
Monte Carlo refinement have been proposed [75-80]. In ICM-DISCO 
[77], the simulations start with a rigid-body docking searched by 
a pseudo-Brownian Monte Carlo simulation. The second step is 
the Monte Carlo refinement of ligand side-chain torsion angles. 
In RosettaDock [75], the simulations start from random ligand-
receptor orientations, followed by a low-resolution rigid-body 
docking. In a second step, RosettaDock optimizes side chains and 
rigid-body orientations simultaneously, based on the simulated 
annealing Monte Carlo simulation. In both approaches, the rigid-
body docking is performed by Monte Carlo searches. In the first 
stage of RosettaDock the proteins are represented as backbones 
plus side-chain centroids, and the search is guided by a residue-
scale interaction potential. Benefiting from the simplified protein 
representation, the method was later extended to account for 
loop flexibility [80]. Lorenzen and Zhang [78] refined initial 
docking estimates of protein complex structures, generated by 
an FFT-based method, using a Monte Carlo approach including 
rigid body moves and side-chain optimization. During the 
simulation they gradually shifted from a smoothed van der Waals 
potential, which prevented trapping in local energy minima, to 
the standard Lennard–Jones potential. Following the simulation, 
the conformations were clustered to obtain the final predictions. 
The refinement procedure was able to generate near-native 
structures (interface rmsd<2.5 Å) as first model in 14 of 59 
cases in the benchmark set. Pierce and Weng [79] refined global 
docking predictions from ZDOCK using RosettaDock, and selected 
the best models based on their ZRANK score. Refining docking 
benchmark predictions from ZDOCK led to improved structures 
of top ranked hits in 20 of 27 cases, and an increase from 23 to 27 
cases with hits in the top 20 predictions. In addition, the ZRANK 
energy function was optimized using the refined models. With 

the new energy function, the numbers of cases with hits ranked 
at number one increased from 12 to 19 and from 7 to 15 for two 
different ZDOCK versions. These results show that combinations 
of independently developed docking protocols (ZDOCK/ZRANK 
and RosettaDock) can substantially improve protein-docking 
results.

Several studies show convincingly that the accuracy and 
reliability of docking results can be often significantly improved 
by combining different classes of methods. For example, Kozakov 
et al have studied the 30 clusters generated by FFT-based docking 
by starting RosettaDock runs from random points around 
the cluster centers, and observing whether a certain fraction 
of trajectories converge to a small region within the cluster 
[81]. A cluster was considered stable if such a strong attractor 
existed and contained a low-energy structure. It was shown 
that all clusters close to the native structure are stable, and that 
restricting considerations to stable clusters eliminate around half 
of the false positives. More generally, improving model accuracy 
using Monte Carlo methods enables the use of potentials that are 
more accurate, but also more sensitive to structural errors.

The analysis of docking predictions by the community-wide 
experiment on the Critical Assessment of Predicted Interactions 
(CAPRI) shows that Monte Carlo based methods can yield highly 
accurate models, but the search is restricted to a neighborhood 
of the starting structures [31]. In principle, a fairly accurate 
structure of the complex contains information about binding 
energy/affinity and a number of structural features have been 
shown to correlate with affinity [47]. We asked whether it is 
possible to predict affinity by rigid-body approaches followed by 
one or several RosettaDock refinements if productive encounter 
complex structure is known. The Version 1 structure-affinity 
Protein Docking Benchmark of four laboratories [15], which 
is a nonredundant set of 144 protein–protein complexes that 
have high-resolution structures available for both the complexes 
and their unbound components, and for which dissociation 
constants have been measured by biophysical methods, and 
updates by Vreven et al [16] was used to assess the performance 
of RosettaDock refinements. The set is diverse in terms of the 
biological functions it represents, with complexes that involve 
G-proteins and receptor extracellular domains, as well as antigen/
antibody, enzyme/inhibitor, and enzyme/substrate complexes. It 
is also diverse in terms of the partners’ affinity for each other, 
with Kd ranging between 10-5 and 10-14 M. Nine pairs of entries 
represent closely related complexes that have a similar structure, 
but a very different affinity, each pair comprising a cognate and a 
noncognate assembly. For sake of simplicity we considered only 
the cases either of small conformational changes (I_rmsd <0.6Å) 
or large ones (I_rmsd >2.5 Å). 

With the aim of assessment the performance of RosettaDock 
refinements the unbound structures were superimposed over 
the bound complex and the resulting superposed structure was 
used as the starting structure for local docking. We first prepared 
each docking partner in isolation, optimizing their side-chain 
conformations prior to docking using docking_local_refine option. 
The same procedure was applied to the structures of complexes. 
–11.782 For the assessment of RosettaDock performance we 
used the convergence of the starting structures to the structure 
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of the bound complex. To do that we calculated the number of 
refinement runs resulting in convergence (NRDcnv). We judged 
the RosettaDock refinements as convergent if I_rms deviation 
from the bound state was <0.5Å and the distinct funnel took 
place. If such convergence was not reached during 10 refinement 
runs and the deviation from the bound state remained stable 
during last five steps the refinement process was judged as 
nonconvergent. Our results also show a good correlation 
between binding affinity and interface energy score values (I_sc), 
which are the total score differences between the components 
together and the components pulled far apart from each other 
without their relaxation (repacking). While in our recent paper 
[82] we used the RosettaDock binding score (RDBS), which is the 
total score difference between the components together and the 
components pulled far apart after their relaxation (repacking), to 
rank different docking solutions by affinities, affinity prediction 
based on I_sc values seems to be more convenient because 
I_sc calculations are free from the problems associated with 
global minimization of pulled apart individual components; 
these problems are especially grave when membrane proteins 
or protein complexes are docked. The results of analysis of 
RosettaDock refinements performance are given in (Table 2). It 
is seen from the Table that the convergence was not achieved for 
five complexes that display large conformation changes, and also 
for one complex with small conformational changes.

In the initial global search some unspecific sterical overlap 
between docking partners is typically tolerated to implicitly 
account for conformational adjustment of binding partners. For 
the success of a multistep docking strategy it is necessary that the 
set of selected rigidly docked structures would contain solutions 
sufficiently close to the native structure in order to allow for 
further improvement during the refinement process. Overall, 
good discrimination of near-native docking poses from the very 
early stages of rigid-body protein docking is essential step before 
applying more costly interface refinement to the correct docking 
solutions. Hence, the initial scoring has to be powerful enough 
to recognize and preselect a binding mode sufficiently close to 
the native position and it has to simultaneously tolerate possible 
inaccuracies, such as atomic overlaps at the interface. An ideal 
scoring function should recognize favorable native contacts as 
found in the bound complex and discriminate those from non-
native contacts with lower scores. However, even a best possible 
arrangement of rigid unbound partner structures (superimposed 
on the corresponding bound structures in the native complex) 
can result in small number of native contacts in case of significant 
backbone and side changes at the interface [5]. This indicates that 
in case of significant backbone and side changes at the interface 
the contacting residue or atom pairs of rigidly docked proteins 
may show little correspondence to the native interface structure. 
Thus, near-native poses might be overlooked during the rigid 
docking search even with a powerful scoring function. Recently, 

Table 2: Performance of Rosetta Dock refinements on 25 Version 1 Structure-affinity Benchmark [15] complexes.

ref(a) Complex PDB Unbound 
component_1 PDB

Unbound 
component_1 PDB

Kd
(M)

I_rmsd
[7]

I_sc bound
and funnel (f) 
presence

nRDcnv(b)

I_sc
unbound
superimposed on 
bound
after Ncnvb 
refinement runs
and funnel (f) 
presence

7 1AVX_A:B 1QQU_A 1BA7_B 4.8E-10 0.47 -10.3 (f) 3 -8.2 (f)

8 1AVZ_B:C 1AVV_A 1FYN_A 1.6E-05 0.73 -7.0 (f) 3 -6.2(f)

9 1AY7_A:B 1RGH_B 1A19_B 2.0E-10 0.54 -7.4 (mf) 8 -6.5(mf)

12 1BRS_A:D 1A2P_A 1A19_B 2.0E-13 0.42 -12.4(f) 4 -8.9(f)

13 1BUH_A:B 1HCL_A 1DKS_A 7.7E-08 0.75 -6.9(mf) 6 -7.5(f)

15 1BVN_P:T 1PIG_A 1HOE_A 9.2E-12 0.87 -12.5(f) 2 -8.0(f)

23 1E96_A:B 1MH1_A 1HH8_A 2.7E-06 0.71 -7.5(mf) 7 -6.6(mf)

24 1EAW_A:B 1EAX_A 9PTI_A 5.0E-11 0.54 -6.4(mf) 2 -6.6(mf)

26 1EFN_B:A 1AVV_A 1FYN_A 3.8E-08 0.90 -7.8(mf) 5 -5.8(f)

28 1EWY_A:C 1GJR_A 1CZP_A 3.6E-06 0.80 -7.5(mf) 5 -5.2(mf)

30 1F34_A:B 4PEP_A 1F32_A 1.0E-10 0.93 -8.6(f) 3 -6.3(f)

31(f) 1F6M_A:C 1CL0_A 2TIR_A 2.7E-06 4.90 -6.1(bf) Ncnv10

35 1FQJ_A:B 1TND_A 1FQI_A 6.7E-08 0.91 -10.2(f) 4 -6.7(f)

37 1GCQ_B:C 1GRI_B 1GCP_B 1.7E-05 0.92 -8.3(f) 7 -5.8(f)

40 1GPW_A:B 1THF_D 1K9V_F 5.0E-9 0.65 -10.0(f) 4 -9.0(f)

46 1HE8_B:A 821P_A 1E8Z_A 3.2E-06 0.92 -5.8(bf) 3 -6.0(f)

48 1I2M_A:B 1QG4_A 1A12_A 2.5E-12 2.12 -13.4(f) Ncnv10
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51 1IBR_A:B 1QG4_A 1F59_A 1.0E-09 2.54 -16.6(f) Ncnv10

54 1J2J_A:B 1O3Y_A 1OXZ_A 1.1.E-6 0.63 -6.2(f) 7 -6.0(bf)

58 1JTG_B:A 3GMU_B 1ZG4_A 4.0E-10 0.49 -12.8(f) 4 -9.8(f)

64 1KTZ_A:B 1TGK_A 1M9Z_A 2.0E-07 0.39 -7.3(f) 3 -6.2(bf)

66 1KXQ_H:A 1KXQ_H 1PPI_A 3.5E-09 0.72 -9.3(f) 4 -7.1(f)

68 1M10_A:B 1AUQ_A 1M0Z_B 5.8E-09 2.10 -8.0(f) 3 -6.8(f)

69 1MAH_A:F 1J06_B 1FSC_A 2.5E-11 0.61 -8.3(f) 3 -6.7(f)

75 1NVU_R:S 1LF0_A 2II0_B 1.9E-06 3.09 -16.4 (f) Ncnv10

80 1PPE_E:I 2PTN_A 1LU0_A 3.0E-12 0.34 -10.8(f) 2 -6.5(f)

81 1PVH_A:B 1BQU_A 1EMR_A 8.0E-06 0.34 -7.2(f) 3 -6.9(f)

82 1PXV_A:C 1X9Y_A 1NYC_A 3.1E-10 2.63 -14.8 (mf(d)) 7 -8.4 (f)

83 1QA9_A:B 1NHF_A 1CCZ_A 9.0E-06 0.73 -4.6(bf) 3 -4.9(mf)

84 1R0R_E:I 1SCN_E 2GKR_I 2.9E-11 0.45 -11.1(mf) 7 -6.0(f)

89 1T6B_X:Y 1ACC_A 1SHU_X 1.7E-10 0.62 -8.9(f) 7 -7.3(f)

91 1UUG_A:B 3EUG_A 2UGI_B <1E-13 0.77 -10.9(f) 7 -6.9(f)

99 1YVB_A:I 2GHU_A 1CEW_I 6.5E-09 0.51 -9.8(f) 7 -8.1(f)

99 2OUL_A:B 3BPF_A 2NNR_A 1.7E-09 0.53 -8.7(f) 4 -7.7(f)

100 1Z0K_A:B 2BME_A 1YZM_A 7.7E-06 0.53 -9.6(mf) 7 -7.3(f)

101 1ZHI_A:B 1M4Z_A 1Z1A_A 2.0E-07 0.68 -7.8(f) 5 -7.2(f)

102 1ZLI_A:B 1KWM_A 2JTO_A 1.3E-09 2.53 -13.8 Ncnv10

103 1ZM4_A:B 1N0V_C 1XK9_A 1.3E-06 2.94 -6.7(bf) 4 -7.2(f)

104 2A9K_A:B 1U8Z_A 2C8B_X 6.0E-08 0.85 -11.6(f) 7 -7.2

106 2AJF_A:E 1R42_A 2GHV_E 1.6E-08 0.65 -5.8(bf) 9 -6.7(f)

108 2B42_A:B 2DCY_A 1T6E_X 1.1E-09 0.72 -14.5(f) 7 -9.1(f)

110 2BTF_A:P 1IJJ_B 1PNE_A 2.3E-06 0.75 -6.2(f) 5 -5.3(f)

111 2COL_A:B 1FCH_A 1C44_A 1.1E-07 2.62 -6.7 5 -7.0

113 2GOX_A:B 1C3D_A 2GOM_A 1.4E-09 0.60 -8.2(f) 4 -7.9(f)

118 2I9B_E:A 1YWH_A 2I9A_A 3.3E-10 3.79 -12.9(bf) Ncnv10 -5.7(bf)

123 2O3B_A:B 1ZM8_A 1J57_A 3.2E-12 3.13 -7.5(f) Ncnv10 -5.6(bf)

124 2OOB_A:B 2OOA_A 1VJ1_A 6.0E-05 0.85 -6.7(f) 8 -5.2(f)

127 2PCB_A:B 1CCP_A 1HRC_A 1.0E-05 0.45 -4.9(bf) 5 -5.1(f)

128 2PCC_A:B 1CCP_A 1YCC_A 1.6E-06 0.39 -4.9(bf) 3 -4.9(f)

129 2PTC_E:I 2PTN_A 9PTI_A 6.0E-14 0.28 -9.7 (f) Ncnv10 -5.5 (f)

130 2SIC_E:I 1SUP_A 3SSI_A 1.7E-11 0.36 -12.9 (f) 2 -9.9(f)

131 2SNI_E:I 1UBN_A 2CI2_I 2.0E-12 0.35 -9.4 (f) 4 -8.3 (f)

132 2TGP_Z:I 1TGB_A 9PTI_A 2.4E-06 0.57 -8.9 (f) 5 -5.5 (f)

133 2UUY_A:B 2PTN_A 2UUX_A 5.6E-09 0.44 -8.9 (f) 5 -7.0 (f)

134 2VDB_A:B 3CX9_A 2J5Y_A 1.5E-10 0.47 -10.4(f) 3 -7.4 (f)

139 3SGB_E:I 2QA9_E 2OVO_A 1.8E-11 0.36 -10.7(f) 5 -7.7

(a)  Stands for number in structure-affinity benchmark Version 1.0 [15]
(b) Ncnvb stands for number of Rosetta Dock refinements runs resulting in I_rms- deviation from bound    conformation < 0.5 Å
(c)  (f) denotes the presence of funnel
(d) (mf) stands for moderate funnel
(e) (bf) stands for bad funnel
(f) Complexes with I_rmsd >2.0 are presented in bold
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the limitations of rigid docking strategies combined with a 
rescoring step have been systematically investigated by Pons et al., 
[83]. The authors applied a combination of rigid FFT-correlation 
based docking and rescoring using the pyDock approach. The 
protocol showed very good performance for most proteins 
that undergo minor conformational changes upon complex 
formation (<1A˚ Rmsd between unbound and bound structures) 
but unsatisfactory results for cases in which binding induced 
significant conformational changes or applications that involved 
homology modeled proteins. These data and considerations of 
precedent section suggest that if conformational changes upon 
binding are moderate and if the productive encounter complex 
is reliably determined by rigid-body global docking it is possible 
to predict affinity with a fairly good accuracy. One may expect 
that the use of several successive refinements taking into account 
flexibility of side chains may be a promising strategy to predict 
structure of protein-protein complex and assess affinity. This 
raises at least two questions: (i) how to determine that some 
preselected pose determined by rigid docking represents a near-
native productive encounter complex; and (ii) how to assess the 
conformational flexibility in the absence of experimental data on 
the structures of both unbound proteins and their complexes. 
As to the latter question it is appropriate either to use direct 
experimental data on protein flexibility of proteins, or use implicit 
reasons based on protein selectivity [84], or alternatively make 
theoretical estimates [5]. The protein selectivity is a promising 
feature because it has been determined for a broad number of 
proteins and strongly correlates with the protein rigidity upon 
protein-protein association.

The most difficult task is the establishment of the structure 
and affinity of a protein-protein complex when the transfer 
from encounter complex to final one is coupled with significant 
changes of backbone structure. Several current programs 
possess the capacity to take into account backbone flexibility. 
For example, in Fiber Dock, backbone mobility is modeled by 
an unlimited number of low and frequency normal modes [85], 
while in ATTRACT, it is modeled by the first few lowest frequency 
modes [86].

Classification of transient protein-protein 
interactions by RosettaDock I_sc scores

Nearly a decade ago, Nooren and Thornton have proposed a 
two-class classification of transient protein-protein interactions 
based on the lifetime (or stability) of the protein-protein 
complex [48]. In this classification weak transient interactions 
that feature a dynamic oligomeric equilibrium in solution, where 
the interaction is broken and formed continuously, and strong 
transient interactions that require a molecular trigger to shift the 
oligomeric equilibrium have been distinguished. More recently, 
another classification, based on the binding affinities, has been 
reported [9]. In accordance with this classification the binding 
affinities have been categorized into five classes: Very High 
(Kd<10-10M), High (10-10M< Kd<10-8M), Medium (10-8M< Kd<10-

6M), Low (10-6M< Kd<10-5M), and Very Low (Kd>10-5M). Because 
in accordance with the classification of Nooren and Thornton 
and experimental data available (reviewed in [9]) Very High and 
Very Low affinities correspond to permanent binding and weak 
transient interactions, respectively, whereas the interactions 

of the remaining three classes can be assigned to Strong 
Transient ones as requiring a trigger for protein-protein complex 
dissociation, we have recently categorized all interactions into 
five classes (Permanent (Kd<10-10M), High - Strong transient (10-

10M< Kd<10-8M), Medium - Strong transient (10-8M< Kd<10-6M), 
Low - Strong transient (10-6M< Kd<10-5M), and weak transient 
(Kd>10-5M)) [82]. Although a good correlation between binding 
affinity and scores is absent for most computational docking 
algorithms, we used an approximate correlation between 
RosettaDock binding score (RDBS), which was calculated by 
subtracting the corresponding score of complexes from those of 
the individual chains, and binding affinity [9] to assign transient 
interactions to the above four transient interaction classes. RDBS 
values were used for the qualitative ranking between different 
complexes by affinities also because we have revealed that 
for a number of protein-protein complexes from the Protein-
Protein Docking Benchmark 3.0 [88], affinity data of which 
have been measured with isothermal titration calorimetry , the 
interactions with (RDBS > -5), (-5> RDBS >-30), (-30> RDBS 
>-80), (-80> RDBS >-180) might be assigned, to a fairly good 
approximation, to Weak transient (Kd>10-5M), Low – Strong 
transient (10-6M< Kd<10-5M), Medium - Strong transient (10-

8M< Kd<10-6M), and High - Strong transient (10-10M< Kd<10-8M) 
interactions, respectively (‘Unpublished results’). In this paper 
we propose a new five-class classification of transient protein-
protein interactions by RosettaDock I_sc values. We categorize 
all transient interactions into five classes (Very High-Strong 
transient (10-14M<Kd<10-10M), High -Strong transient (10-10M< 
Kd<10-8M), Medium - Strong transient (10-8M< Kd<10-6M), Low - 
Strong transient (10-6M< Kd<10-5M), and weak transient (Kd>10-

5M)). The data given in (Table 2) support a quite satisfactory and 
fairly universal interrelation between RosettaDock interface 
energy score (I_sc) and the above five classes of transient 
interaction, whereby for a significant number of protein-protein 
complexes the interactions with (I_sc > -4), (-4> I_sc >-5.5), (-6.5> 
I_sc >-8.5), (-8.5> I_sc >-12), (-16<I_sc<-12) might be assigned, to 
a fairly good approximation, to Weak transient (Kd>10-5M), Low 
– Strong transient (10-6M< Kd<10-5M), Medium - Strong transient 
(10-8M< Kd<10-6M), High - Strong transient (10-10M< Kd<10-8M) 
and Very High-Strong transient interactions (10-14M<Kd<10-

10M), respectively (‘unpublished results’). Such a correlation 
allows the approximate qualitative ranking between different 
complexes by affinities through their ranking by the RosettaDock 
interface energy score (I_sc). The chief merit of using I_sc over 
the RosettaDock binding score (RDBS) is that I_sc ranking is free 
from the problems associated with global minimization of pulled 
apart individual components; these problems are especially grave 
when membrane proteins or protein complexes are docked.

DISCUSSION & CONCLUSION
Protein– protein docking aims to predict the three-

dimensional structure of a complex from the knowledge of the 
structure of the individual proteins in aqueous solution. Many 
docking methods are now able to predict the three-dimensional 
structure of binary assemblies if the protein partners do not 
display important conformational changes between their 
bound and unbound forms. However, large-scale motion upon 
binding is still a major and unresolved problem in the absence 
of experimental constraints. This motion generally involves the 
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displacement or the internal rearrangement of loops or domains 
and can also be characterized by the simultaneous movement of 
several flexible parts. However, even though the motion upon 
binding is moderate protein docking often requires the effective 
usage of several steps to produce accurate predictions. The 
refinements using approaches sampling conformation space 
more thoroughly as compared with rigid docking methods, even 
though in ‘semi flexible manner’, such as this does Monte Carlo 
minimization method being applied to side chains in RosettaDock 
protocols [75], present efficient approach to produce accurate 
predictions of 3D-structure of the protein-protein complexes and 
affinity. However when the conformational changes upon protein 
binding are large there are no universally reliable tools to assure 
accurate predictions. In order to avoid futile attempts to dock 
flexible proteins using rigid methods, even though with semi 
flexible refinements, it is necessary to develop and use methods 
that can predict protein flexibility [89–91] and such approaches 
allowing the assessment of the flexibility should be used prior to 
docking.
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