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Abstract

Nanoparticles-based products are becoming very popular for consumers, however, 
consumer adoption has outpaced a full understanding of the potentially new safety concerns 
that these materials can present. As particle size is decreased, irrespective of any chemical 
changes, the particles themselves can become easier to liberate into the ambient atmosphere 
and therefore carry an enhanced inhalation concern. Although a thorough understanding of the 
hazards associated with nanoparticles is nuanced and will take decades of devoted research to 
achieve, it is most prudent to protect researchers from unstudied hazards by developing custom 
engineering controls and safe waste handling practices. This work goes beyond common personal 
protective equipment to describe how researchers can set-up fume hoods and glove boxes to 
help mitigate the unknown dangers associated with nanoparticles. We treat all engineered 
nanoparticles as if they are hazardous in every research lab, and explain current best practices 
and our institutional norms for handling nanoparticle waste in a way that minimizes potential 
exposure and keeps laboratory air pristine.

ABBREVIATIONS
NP: Nanoparticles; NPW: Nanoparticles Waste; SAA: Satellite 

Accumulation Area

INTRODUCTION
Nanoparticles (NPs) are particles that are 1-100nm in size in 

two or more dimensions. Over the past decade, they have become 
ubiquitous in commercial applications as varied as sunscreens, 
makeup, window coatings, solar panels, and cookware. The 
nanoscale dimensions of NPs can drastically change a material’s 
physical properties compared to the same material in bulk 
sizes, making them intriguing in many respects. Unfortunately, 
researchers are just starting to understand the environmental 
and health impacts of using these tiny particles. For example, 
silver NPs are thought to support the immune system with their 
antimicrobial properties [1] and are sold in health food stores 
simply as “colloidal silver,” but ingestion of silver is known to 
cause argyria [2]. Silver NPs can also be detrimental to human 
health [3] and interfere with nitrification in water systems 
[4]. Carbon nanotubes are popular because of their unusually 
high thermal conductivity, and as electronic devices become 
increasingly small nanotubes offer a solution to prevent damage 
to devices from overheating [5]. However, carbon nanotubes 
have also been shown to exhibit asbestos-like pathogenicity 
[6]. Quantum dots are another example of useful NPs and are 
semiconductors with interesting electronic and optical properties. 
Lead sulfide in particular is of interest for photoelectrochemical 

devices [7], yet it is extremely toxic and can be absorbed by the 
bone and kidneys [8]. The list of intriguing applications for NPs 
goes on, and unfortunately so do studies on their health hazards. 
However, more research is needed to establish whether it is the 
nanoscale dimensions themselves, the surface chemistry, aspect 
ratios, or other factors that are responsible for these potentially 
deleterious health effects. NP science has grown exponentially 
in recent years and new properties are being explored at a 
staggering rate, but studies on health and environmental impacts 
lag behind. 

Common research practices like injection molding [9] and 
sonication [10] easily aerosolize NPs and increase researcher 
exposure to potentially harmful materials. Fortunately, this 
topic is gaining momentum and new assessments on workplace 
NP exposure continue to emerge [11]. This further highlights 
the importance of working to reduce the release of NPs into the 
breathing environment in research laboratories, where the very 
nature of the work puts researchers at higher risk of exposure 
than the general public.

Regardless of the NP-based products already on the market, 
how do researchers protect themselves from their newly 
developed NPs when they have no clue about the associated 
hazards? NPs have to be synthesized before they can be tested 
for toxicity after all. The goal of this perspective is not to focus on 
studies of potential health problems, but to present our thoughts 
on safe practices for handling nanoparticle-waste (NPW) in 
a research laboratory environment. This article highlights 
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steps we have taken at the Molecular Foundry, a User Facility 
at Lawrence Berkeley National Laboratory that specializes in 
the science and discovery of nanoscale materials, to mitigate 
potentially unhealthy exposure to Inorganic NPW when the 
hazards are unknown. We detail and explain fume hood flow rate 
optimization, best practices for organizing work space and glove 
box setup to safely manage the handling of NPW.

DISCUSSION
Regardless of the hazards of the reactants in chemical 

reactions, it is extremely important for researchers to know that 
the hazards of the NPs they are making are not fully understood. 
As such, it’s important to treat new NPs as hazardous materials 
and to design methods and best practices to ensure that NPW is 
carefully handled in a way that minimizes potential exposure. 

As a User Facility, we work with researchers from a wide 
range of scientific and safety backgrounds, so have found it 
necessary to develop and implement safe practices for the 
handling of NPW. We have strict guidance that all Inorganic 
NPs must be synthesized within a fume hood or glove box to 
help ensure that the lab’s breathing space remains clean and 
free of engineered NPs, and all NPW is properly enclosed prior 
to collection by the on-site hazardous waste group. This paper 
outlines measures that can be taken when developing a lab space 
to help minimize exposure to NPW beyond standard personal 
protective equipment12, focusing on keeping NPs out of the lab’s 
breathing environment by properly outfitting and monitoring 
constant velocity fume hoods and inert atmosphere glove boxes. 
Our hope that these methods and thoughts on lab set-up will 
help researchers develop better or improve upon existing NPW-
handling practices to keep their lab air NP-free.

FUME HOOD SET-UP
When handling NPs and NPW in a fume hood the air flow is 

crucial. Fume hoods can leak when the hood’s face velocity is 
too low, but maintaining a velocity of 80–120 ft/min prevents 
leakage of NPs into the breathing zone (Figure 1) [13]. Traditional 
constant-flow fume hoods can release a significant amount of 
airborne NPs into the breathing zone of workers, especially when 
the hood sash is fully open or when there is a lot of air movement 
in the lab environment, because the rate of the air flow velocity is 
not maintained when the sash is moved [14]. As a result, there is 
typically one safe position (typically mid-height or lower, Figure 
1) in which the fume hood is at optimum flow and is safest to use. 
Constant-velocity fume hoods, by contrast, automatically adjust 

to maintain the same airflow regardless of the sash height, [15] 
though a fully open hood sash is not ideal as it requires a lot of 
energy to maintain the velocity, straining building ventilation 
systems. Given the wide background of researchers in a User 
Facility, all of our fume hoods are of the constant-velocity style, 
which don’t require constant attention to airflow when Users are 
adjusting the sash height (Figure 1). 

It is commonly recommended that fume hoods operate at 
a velocity between 80-120 ft/min, and it has been shown that 
when handling NPs a constant velocity of 100 ft/min is enough 
to prevent NPs from leaking into the breathing zone [13]. At this 
velocity there is also little impact when arms enter into the fume 
hood work space [15]. As a result, all fume hoods in the Molecular 
Foundry are maintained above 100 ft/min. 

Even at ideal velocity it’s possible for NPs to enter into the 
breathing zone if researchers don’t take care with handling. 
Figure 2A illustrates how NPs and NPW move in a fume hood. 
When a container holding dry NPW is at the front of the hood 
(closest to the researcher), NPs can enter the breathing zone 
because the air flow pattern changes. This is why we have a strict 
policy that researchers should not clutter their work space or 
block the threshold (space below the sash). NPW should ideally 
be placed toward the back of the fume hood, but with airflow 
patterns the middle is also safe. Colloidal Inorganic synthesis 
usually requires the use of a Schlenk line and hot plate/stirrer, 
which take up hood space and moves NPW and the reaction itself 
toward the front of the hood. This was taken into account in our 
facility so the fume hoods were designed to be six inches deeper 
than is standard. As a result, a Schlenk line can be mounted on a 
rack in the back of the hood while leaving room for chemistry and 
NPW to reside in the middle of the hood. There is easily enough 
space for NPW containers (for solids, solvents, and sharps) to 
sit directly next to or next to and behind any ongoing chemical 
procedures (Figure 2).

GLOVE BOX DESIGN
When a fume hood is not practical for the relevant chemical 

procedure, NPs may alternatively be synthesized in an inert 
atmosphere glove box. Though the use of a fully contained glove 
box as a safety measure may seem obvious when dealing with 
NPW, it’s important to highlight that they are not foolproof, and 
active measures must be taken to help maintain a safe breathing 
environment in the lab space. Figure 3 is an illustration of the 
glove box setup that we use for NP syntheses, highlighting extra 
measures taken to minimize potential NP exposure. Glove boxes 

Figure 1 Cartoon depicting a chemical fume hood showing breathing zone, sash heights, and work area.
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should be equipped with a filtration method to prevent NPs 
where possible from traveling beyond the glove box. We rely 
on HEPA filters on the exit points of every box to accomplish 
this, as this filter type has proven effective down to sub-10nm 
particle sizes [16]. As an extra precaution the vacuum pump 
and purge valve outlets connect directly to the house exhaust 
system, which has been shown to be effective in removing NPs 
from the air [17-19], so there is no exposure to the lab space. 
Though sometimes overlooked, the regeneration of the catalyst 
also has the potential to release NPW into the lab air, so the 
output from every regeneration is collected in a closed jar that 
is also plumbed directly to the building exhaust system. The last 
potential point to mention is that the antechamber door, which 
is the only access point to move samples in and out of the box, 
by necessity, opens into the lab space and has the potential to 
release NPW into the lab air. To prevent NPs from moving into 
the lab air, every antechamber has a snorkel installed directly 
above the antechamber door that maintains the same >100 ft/
min velocity as the fume hoods. The snorkels are connected 
directly to the building exhaust system and prevent NPs floating 
freely in the glove box from entering the breathing space of the 
lab when opening an antechamber door. Cartoon is drawn from 
the perspective of looking directly at the face of the glovebox. Star 
designates connections made directly to the building exhaust 
system (Figure 3) [20].

NPW COLLECTION
When working with NPs either in a fume hood or glove box, 

it is important to minimize the potential of the NPW generated 
from getting into the breathable airspace of the lab. To help 
ensure safe work practices, we teach common best practices to 
all Users working within the lab. Surfaces with nanoparticles 
present are wiped with a wet towel (dryer NPs are easier to 

aerosolize) and the cleaning towel as well as any solids with the 
potential of containing residual NPs (e.g. gloves, kimwipes, used 
plastic syringe plungers, etc.) are collected in a small sealable bag. 
NP-contaminated sharps are placed in unregulated sharps boxes 
with sealable lids. At the end of the day or completion of the NP 
reaction, the containers are sealed in the fume hood or glove 
box, properly labeled, and placed in a satellite accumulation area 
(SAA) to await waste pick up. Any NP-containing solvents are 
collected in a bottle next to the synthesis being performed and 
once the reaction has been completed the NP-containing solvents 
are transferred in the hood or glove box into an acceptable 
waste container, then properly labeled and placed in a SAA to 
await picked up by the waste group. Sealing NPW containers 
and pouring NP-containing solvents into waste containers only 
within a glove box or fume hood ensures that safety measures 
designed for these work spaces are utilized and there is little 
chance of NPW entering the breathing space of the lab (21-23).

There are many more operations with the potential to 
release NPs into the research lab air, such as sample transfer 
between work spaces, stirring speeds, and the quantity of NPs 
being handled. Though we focus here solely on safe practices 
for NP handling in glove boxes and fume hoods, maintaining a 
safe breathing environment within a research lab remains a very 
complex issue.

CONCLUSION
This paper describes NPW-handling methods to keep NPs, 

with their unexplored hazards, out of lab air. Constant velocity 
fume hoods operating > 100 ft/min are ideal for keeping NPs 
out of the breathing zone, and designing reaction set-ups to keep 
reactions as well as NPW away from the fume hood threshold 
help ensure a safe lab environment. Furthermore, taking care to 
minimize potential access points where glove boxes can transfer 

Figure 2 A) Movement of NPs from NPW in fume hood dependent upon location of container (forward, middle, or back) and B) typical set-up of a 
fume hood for Inorganic NP synthesis including Schlenk line, reaction set-up, and NPW containers.
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Figure 3 Diagram showing recommended glove box set-up to 
minimize NP exposure at the Molecular Foundry.

NPs into the air as well as ensuring NPW is completely sealed 
prior to disposal help keep even inexperienced researchers safe in 
a NP research environment. Instilling good habits and developing 
engineering controls will help keep researchers healthy and able 
to find the next amazing innovations in nanoscience.
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