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Abstract

In doped calcium fluoride transparent conducting powder were prepared by solid state reaction method. Structural properties of the samples were investigated as a function 
of various In-doping levels (x=0.00-0.04-0.05-0.06). The results of x-ray diffraction have shown that the samples are polycrystalline structure in cubic phase, with preferential 
orientations along the (112) for In for all samples, and show presence (111), (220), (311), (400) planes in pure CaF2 sample and The preferred orientation is (220) for pure CaF2, and 
we have peaks correspond to (101), (002), (110), (112), (200), (202) for In for all samples and The preferred orientation is (112) for In for all samples. The average of crystallite size 
is within the range [5.148-1.041 nm] for all samples. The relative intensities, distance between crystalline planes (d), crystallite size (D) and lattice parameters (a) were determined. 

INTRODUCTION
Calcium fluoride (CaF2) density is 3.18 (g/cm3) melting at 

1633 (K) and crystalize in cubic structure with lattice constants 
a = 5.432 Å.

CaF2 is presently the fastest known scintillator. It has an 
emission component with subnanosecond decay time [1,2].

CaF2 has several scintillation emission bands. The fast 
scintillation light is emitted in the UV bands centered at 220 and 
200 nm.

The decay time of the fast component varies between 600 and 
800 ps [3].

CaF2 has attracted much attention because of its wide range 
of potential applications in optoelectronic and microelectronic 
devices [4-6,8].

CaF2 compounds doped with rare-earth ions have been 
reported to display unique luminescence properties and can thus 
be used as scintillators [7,9-11].

EXPERIMENTAL METHOD
CaF2: In powders (x = 0.00, 0.04, 0.05, 0.06) (Tables 1-4) 

were prepared by a solid state reaction method, were accurately 
weighed in required proportions and were mixed and ground 
thoroughly using an Agate mortar and pestle to convert to very 
fine powders.

The grinding of the mixtures was carried out for 3 hours for 
all the powder samples. The ground powder samples were firing 
at 700°C for 3 hours.

RESULTS AND DISCUSSIONS

Structural properties

The X-ray diffraction (device type XRD-PW 1840 PHILIPS 
production is connected to a computer with software for 
diffraction spectrum processing) patterns of undoped and In 
doped CaF2 powders prepared with various In concentration 0 
wt%, 4 wt%, 5 wt% and 6 wt% are shown in Figure 1.

The XRD reveals that all samples are having polycrystalline 
nature with cubic structure.

The relative intensities of undoped and in doped CaF2 
powders are calculated. The distance between crystalline planes 
values (d) are calculated by using following relation:

2 .sind nθ λ=                            (1)

Where d is distance between crystalline planes (A°), θ is the 
Bragg angle, λ is the wavelength of X-rays (λ=1.78897 A°).

The crystallite size is calculated from Scherrer’s equation 
[12]:

0.94
cos

D λ
β θ

=                                     (2) 

where, D is the crystallite size, λ is the wavelength of X-ray, ẞ is 
full width at half maximum (FWHM) intensity in radians and θ is 
Braggs’s angle.

The dislocation density is defined as the length of dislocation 
lines per unit volume and calculated by following equation [13]:

2

1
D

δ =                                              (3)

The lattice constants a for cubic phase structure is determined 
by the relation [14]:
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Figure 1 XRD results of pure CaF2, 4 wt% in doped CaF2, 5 wt% in doped CaF2, 6 wt% in doped CaF2.
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Table 1: shows results of structural values of undoped CaF2 sample.

Samples
S 2θ (deg) (hkl) d (A°) Rel. int. 

[%] β (deg) D (nm) Average 
D(nm) Δ 1015line/m2 Lattice const.

a(Å)

CaF2 

33.12 (111) 3.138 80 1.250 1.403

1.504

508.024

5.456
55.23 (220) 1.929 100 1.720 1.103 821.956

Pure
65.78 (311) 1.647 48 1.350 1.483 454.692
82.23 (400) 1.360 33 1.100 2.029 242.904

Table 2: shows results of structural values of In doped CaF2 samples (x=0.04).

Samples 2θ (deg) (hkl) d (A°) Rel. int. 
[%] β (deg) D (nm) Average 

D(nm)

Δ

Lattice const.
a(Å)1015line/m2

CaF2:In
33.06 (101) 3.144 82 1.335 1.294

1.520

597.216

4.759
54.82 (112) 1.943 100 1.650 1.148 758.780

(4 wt%)
65.72 (200) 1.648 46 1.550 1.291 416.233
82.14 (202) 1.361 28 0.950 2.347 181.540

Table 3: shows results of structural values of In doped CaF2 samples (x=0.05).

Samples 2θ (deg) (hkla) d (A°) Rel. int. 
[%] β (deg) D (nm) Average 

D(nm)
Δ Lattice const.

a(Å)1015line/m2

CaF2: In
32.83 (101) 3.166 63 1.320 1.328

2.091

567.702

4.754
47.01 (110) 2.242 25 0.420 4.366 52.460

(5 wt%)
54.88 (112) 1.941 100 1.820 1.041 922.780
65.92 (200) 1.644 46 1.260 1.599 391.113
82.08 (202) 1.362 31 1.050 2.123 221.870

Table 4: shows results of structural values of In doped CaF2 samples (x=0.06).

Samples 2θ (deg) (hkl) d (A°) Rel. int. 
[%] β (deg) D (nm) Average 

D(nm)
Δ Lattice const.

a(Å)1015line/m2

CaF2:In
32.91 (101) 3.158 65 1.450 1.209

2.561

684.143

4.747

42.12 (002) 2.489 22 0.350 5.148 37.733

(6 wt%)

46.96 (110) 2.245 27 0.450 4.075 60.220
54.98 (112) 1.938 100 1.750 1.152 753.520
66.96 (200) 1.621 38 1.230 1.639 372.256
82.06 (202) 1.362 29 1.040 2.143 217.748

2 2 2a d h k l= + +                  (4)

where d and (hkl) are distance between crystalline planes and 
Miller indices, respectively.

CONCLUSION
This paper presents a study of structural properties of, in 

doped CaF2 powders prepared by solid state reaction method. 
X-ray diffraction patterns confirm that the samples have 
polycrystalline nature with cubic structure and show presence 
(111), (220), (311), (400) planes in pure CaF2 sample. The 
preferred orientation is (220) for pure CaF2. 

For 4% in we have peaks correspond to (101), (112), (200), 
(202) .The preferred orientation is (112). 

For 5% In We noticed appearance of this orientation (110).

For 6% In We noticed appearance of these orientations (002), 
(110).

The average of crystallite size is within the range [5.148-
1.041 nm] for all samples. It was defined that the lattice constants 
a for all the samples, were almost identical with JCPDS values.
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