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Abstract

Mitoxantrone is an anticancer drug which is mostly used for the treatment of 
breast cancer and non-Hodgkin’s lymphoma. Its structure is related to anthracycline. 
There are only few methods available for its synthesis. It is synthesized to reduce the 
cytotoxic effects of anthracycline derivatives. There are more than fifteen analogues 
of mitoxantroneon the basis of different groups attached at positions 1 to 4. It is an 
inhibitor of DNA-topoisomerase II, but its exact mode of action is unknown. The spectral 
elucidation and elevation of melting temperature technique are used to study DNA-
binding properties of mitoxantrone. The major adverse effects of mitoxantrone usage 
arecardiotoxcityand effecting the electron transport chain in mitochondria. Efforts 
are required to synthesize better analogues of mitoxantrone that posses cancer cell 
specific cytotoxicity.

ABBREVIATIONS
MX: Mitoxantrone; DNA: Deoxyribonucleic Acid; Ssdna: 

Single Stranded Deoxyribonucleic Acid; Dsdna: Double Stranded 
Deoxyribonucleic Acid; DPV: Differential Pulse Voltammetry ; 
CV: Cyclic Voltammetry; CPE: Carbon Paste Electrode; RRMS: 
Relapsing-Remitting MS; PRMS: Progressive Relapsing MS 
(PRMS); LVFE: Left Ventricular Ejection Fraction; CHF: Congestive 
Heart Failure; ECG: Electrocardiogram; MX-MET: L-Methionine-
Conjugated MX

INTRODUCTION
Mitoxantrone has a wide range of antitumor activities. It 

can be used to treat various types of malignancieswhich may 
include breast cancer,non-Hodgkin’s lymphoma and acute 
myeloidleukemia but not the chronic myeloidleukemia.It has 
been approved as an immune modulatory agent for reducing 
fourteen different types of worsening relapsing–remitting 
multiple sclerosis (MS) by U.S Food and drug administration 
(FDA) [1]. In the year 2000 it has been approved for the treatment 
of neurologic activities by FDA. It is also used to reduce the rate 
of clinical regenerations in patients with inferior progressive, 
progressive degenerating, or worsening degenerating-remitting 
multiple sclerosis [2].

Mitoxantrone is a semisynthetic anticancer drug having in-
ternational union of pure and applied chemistry (IUPAC) name 
of 1,4-dihydroxy-5,8-bis{[2-[(2-hydroxyethyl)amino]-ethyl]

amino]-9,10-anthracenedione. It is powerful cytotoxic agent to 
cure a variety of cancers [3,4]. Mitoxantronestructure (Figure 
1) is related to anthracenedione derivative which is structurally 
related to anthracycline. Theanthracyclines are commonly used 
for upto 75% chemotherapeutic treatment of cancers [5]. How-
ever, the additional hydroxyl groups are present at 5-and 8-posi-
tions of mitoxantrone [6]. It has been synthesized to improve the 
anticancer activity of anthracycline and to reduce side effects of 
anthracyclines such as cardiotoxcity [1]. It is hydrophobic mol-
ecule showing less solubility in water even when it is available 
in its hydrochloride form [6]. In lipids it shows better solubility 
as compared to other solvent however it also show solubility in 
octanol [7,8]. The value of lipid water portioning coefficient of 
mitoxantroneis calculated to be 23000 and due to this reason it 
can cross the plasma membrane with high speed [9].

Synthesis

According to US patent number 4197249 (Murdock &Durr 

Figure 1 Chemical Structure of Mitoxantrone.
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1980) the preparation of mitoxantrone has been done by using 
leuco-tetrahydroxyanthraquinone as starting material (Figure 
2). The general scheme is as under.

However the leuco-tetrahydroxyanthraquinone can be better 
prepared by the method of Chen et al. This process involves the 
synthesis of Mitoxantrone in four steps. According to Chang 
(1992) the syntheses of leuco-tetrahydroxyanthraquinone occur 
in three steps which are key intermediate for mitoxantrone 
synthesis. Chrysazin are used as the precursor for this synthesis. 
In the first step nitration of chrysazin is done in the presence of 
20% oleum and ice cooling is required in order to get 4, 5-dinitro-
chrysazin (Figure 3). During this process an undesired isomer 
that is 2, 4-dinitrochrysazin is formed, which reduces the yield. 
The calculated yield of the desired isomer is 80 %, while 5% is 
that of undesired isomer. This undesired isomer is removed by 
recrystallization in DMF-benzene ethanol mixture. In the second 
step the nitrofunctional group can be reduced by using iron metal 
in sulfuric acid. In this step, 90% yield of 4, 5-diaminochrysazin 
was claimed. In the third step diaminochrysazin is converted 
into leucotetrahydroxyanthraquinone. This intermediate does 
not require further purification.This compound is considered to 
be hygroscopic, light and oxygen sensitive according to Chang & 
Cheng (1995). This compound should be immediately utilized 
in the of fourth step for product formation [10,11]. Further 
the synthesis of mitoxantrone from intermediate compound 
of leucotetrahydroxyanthraquinone was reported by Murdock 
&Durr [12]. In this step the Schiff base is formed by condensation 
of leuco-tetrahydroxyanthraquinone intermediate with an 
amino alcohol (2-(2-aminoehtylamino)-ethanol), which are then 

converted to final product of mitoxantrone by oxidation with dry 
or wet air [12]. This method of synthesis of mitoxantrone was 
also reported by Krapcho [12]. [13]. The schematic pathways for 
this synthesis are as follows.This pathway involves more difficult 
steps in terms of chemical handling such as the use of highly 
reactive boron tribromide and to handle the highly flammable 
butyl lithium during ortho-metallation reaction. The initial 
anthraquinones framework relies on the initial ring formation. 
The amino alcohol side chain was introduced by nucleophilic 
displacement of fluorine leaving group (Figure 4) [13].

Analogues of Mitoxantrone

The mitoxantrone has 15 types of analogues which are 
different on the basis of groups at position No 1, 4,5 and 8, that 
are R1, R2 , R3 and R4 respectively, (Figure 5). Some of them are 
described in (Figure 6).

Mode of Action of Mitoxantrone

The cancerous cells growth can be halted through 
theanthracyclines by two methods. These are

a) Inhibition of topoisomerase [12].

b) By reaction of anthracycline with iron to produce reactive 
oxygen species [16].

Similarly the mitoxantrone is an inhibitor of DNA-
topoisomerase II [17]. The drug can be taken orally or 

Figure 2 Preparation of mitoxantrone (Murdock &Durr 1980).

Figure 3 Preparation of leuco-tetramine hydroxyl anthraquinone 
[10].

Figure 4 Synthesis of Mitoxantrone [13].

Figure 5 Basic nucleus of mitoxantrone.
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Figure 6 Analogues of Mitoxantrone [14].

intravenously. The target of the drug can be DNA inside the 
cellnucleus, with which it intercalates halting its replication 
and RNA transcription and subsequently the protein translation 
process. DNA binds with small molecules in three different 
modes: By electrostatic interaction through its negatively 
charged sugar-phosphate structure or, By binding the drug by 
interacting through the two grooves of DNA double helix or, 
Intercalationof drug among stacked base pairs of native DNA. 
The active site tyrosine of topoisomerase II act as nucleophile, 
that attack the phosphodiester backbone of DNA and removes 
the torsion from it. A new termis introduced for the mode of 
action of topoisomerase inhibitors that inhibit the binding of 
enzyme with DNA. It is called enzyme poisoning and its function 
is similar to that of other drugs that perform catalytic inhibition 
[18]. Wu et al. explain the interaction of Topoisomerase IIβ with 
MX and, Toposiomrase IIβ crystal structure was determined 
which was stabilized by MX [19].Leukaemia cell line when 
treated with mitoxantrone showed down regulation of Top II β 
thus mitoxantrone form a strong cleavage complex with Top II 
α in comparison to its cleavage complex with Top II β [20,21].
The mitoxantronehas high affinity to recognize the chromatin 
structure than the free DNA.Mitoxantrone binds to chromatin to 
form compact structure which inhibits the extraction of histone 
protein from drug treated chromatin. However the exact mode of 
action of mitoxantrone is still not known [22]. The interaction of 
mitoxantrone was also analyzed through the use of differential 
pulse voltammetry (DPV) and cyclic voltammetry (CV) at carbon 

paste electrode (CPE) for its interaction with calf thymus double 
strand DNA (dsDNA) and calf thymus single stranded DNA 
(ssDNA).It wasobserved that whenmitoxantrone binds to DNA, 
resulting achange in mitoxantrone signal showing a decrease 
in signal intensity which was attributed to the interaction of 
mitoxantrone with DNA. A change can also be observed in the 
peak current of oxidation wave of mitoxantrone due to addition 
of an excess of dsDNA or ssDNA in mitoxantronesolution. 
Concentration of mitoxantrone has also a remarkable effect on 
the interaction of mitoxantrone with dsDNA. The response of 
mitoxantrone increase with concentration sharply in both cases 
that is in bare and dsDNA modified CPE’s.They authors explain 
the variation of volumetric behavior of mitoxantrone in aqueous 
medium at DNA modified CPE. This process was done in order 
to modify promising DNA biosensors for development of new 
anticancer drug [23]. The interaction of drug DNA complexes 
was carried out by Ritu et al., who showed that MX interacts with 
DNA in parallel manner because the energy in this case is one 
order less than in perpendicular case. The position of base is also 
change in perpendicular mode of binding. The conformations of 
side chains near to hydroxyl group are considerably different 
in two manners. Orientations of the ring system occur at the 
intercalation site, thus conformation of side chain and DNA 
depends upon the position of substituent side chain. Thus the 
structure of the drug, its conjugation with DNA and its anticancer 
activity all showing the important role of drug designing that 
can bind tightly with DNA [24]. Foye et al., used the spectral 
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elucidation and elevation of melting temperature technique to 
study DNA-binding properties of mitoxantrone. It was observed 
that mitoxantronecan binds to DNA with the help of two different 
sites: a) By interactionbetween consecutive base pairs and b)
through electrostatic interaction including DNA phosphate group 
and amino side chain of mitoxantrone drug [25].

The Observed Side Effects

The cardiotoxicity of mitoxantrone depends on two factors, 
one is age and second is the life time cumulative dose and both 
of these are important [1]. Nowadays in around 2.6% to 13% 
patients, increase in cardiac toxicity has been notice with 140 mg/
m2 dose of mitoxantrone which is consider as maximum life time 
dose [1]. The mitoxantrone can be used in pediatric population 
which include treatment of cancer and it also increase the survival 
rate when treated as a second line therapy for multiple sclerosis 
[26]. According to the data collected by Van Dalen et al, [12], the 
occurrence of mitoxantrone related cardiotoxicity of clinical heart 
failure and asymptomatic cardiac damage have different ranges. 
mitoxantrone-related symptomatic cardiotoxicity/clinical heart 
failure varies between 0 to 6.7% whereas asymptomatic cardiac 
damage varies between 0-80% for children under 18 years of 
age. Studies show the mitoxantroneinduced cardiotoxicity is 
similar in mechanism to that cause by anthracycline [28,29]. 
Invitro (H9c2 cardiomyoblasts) and in vivo (male Wistar rats) 
studies showed damage to mitochondria and cardiotoxicity due 
to mitoxantrone [30-32]. The electron transport chain(ETC) 
is considered as the endpoint for toxicity caused due to 
mitoxantrone. Incase of study on cardiomyoblasts (H9c2) mild 
oxidative stress was observed after mitoxantrone treatment 
and energy imbalance occur due to increase of reactive oxygen 
species (ROS) in the redox cycle [32]. Incase of mitoxantrone 
treatment in rats ETC activities was greatly affected and as a 
result decrease in amount of ATP in mitochondria has been 
observed [31]. Congestive heart failure was also observed in 
patient having drug dosage above the 100mg/m2, that occurs 
mostly in the patients having more risk factors of cardiac. Also at 
the concentration of dosage below 100mg/m2 cardiac dysfunction 
was observed [33]. Iron transport in mitochondria was done by 
p-glycoprotein so its function in mediation of mitoxantronecan 
not be neglected [33]. This drug is approved for treatment 
of various disease such as worsening relapsing-remitting MS 
(RRMS), secondary progressive MS (PRMS) and progressive 
relapsing MS by European Medicines Agency and also by Food 
& Drug Administration (FDA).Mitoxantrone is also used for the 
treatment of various diseases butalong with these usefulness it 
has the above serious harmful side effects. The major adverse 
effect associated with its use iscardio toxicity [34-36]. Although 
the mechanism of action of mitoxantroneis not fully understood 
therefore all of the adverse effects of mitoxantrone on immune 
system need to be explored [37]. The common adverse effects on 
the immune system includes several immunomodulatory effects, 
inducing macrophage-mediated suppression of B-cell, T-helper 
and T-cytotoxic lymphocyte function [38]. Therefore, cardiac 
monitoring of mitoxantrone patients is done by estimation 
of left ventricular ejection fraction (LVFE) by the use of 
echocardiography technique. But by use of this technique we can 
not detect the early cardiac dysfunction [39-40]. Life time dosage 
of mitoxantrone is limited due to its potential toxicity and due 

to its cardiac and hematologic adverse reactions. Approximately 
in 26.6% of patients having mitoxantrone dosage of 140mg/m2 
body surface area has been reported to have congestive heart 
failure (CHF) [41,42]. The myocardial damage in which LVFE 
reduces isoccurring as a result of cardio toxicity of anthracycline 
family that is considering to be dose-dependent. In rare cases 
heart dysfunctions such as electrocardiogram (ECG) changes, 
arrhythmias, CHF and clinical heart failure may occur as a result 
of cardio toxicity [43]. Data collected on mitoxantrone-related 
cardio toxicity in MS are less, thus incident rate for symptomatic 
heart failure ranges between 0.2% and 2.0% [26,35,36,44,45]. 
According to Paul et al., LVEF reduction was observed in early 
stage of mitoxantrone treatment approximately in 4 out of 18 
prospectively assessed patients [46].

Mitoxantrone loaded with nanoparticles (NP)

Nano particles are nowadays widely used for delivering 
of various drugs astheyenhance the solubility of drugs,their 
distributions to the target tissues or cells.NP drug-delivery 
systems increase the absorption of drugs,increase its 
bioavailability and protect drug from degradationinside the 
gastrointestinal tract [47,48]. There a number of studies done 
using nanoparticles as a drug carrier for mitoxantrone.Super 
paramagnetic iron oxide nanoparticles(SIPONS) are consider to 
be safe and favorable [49]. Nowadays most of the of drugs are 
doped with nanoparticles in order to increase theavailability to 
cells.The SPIONs are combined with external magnetic field so 
called Magnetic drug targeting (MDT). The MDT has solve many 
problems related to chemotherapeutic methods in patients of 
cancer. This is expected that drug will approach the targeted 
region in the cancer patients. Studies were done on rabbit in 
which it was observed that mitoxantrone capped with SPIONS 
increased the function of drug including strong magnetic field. 
This approach also decrease the drug toxicity and dosage 
quantity[50].The study showed that mitoxantrone loaded with 
SPION and unloaded show same penetrating and killing effect but 
unloaded do not have better cellular viability [50].Thus loaded 
mitoxantrone effect more effectively on complex multicellular 
tissues and its microenvironment as compared to unloaded [51]. 
The function of MP-SiO2 NPs depend on its complex with boronic 
acid ligands. When the anticancer drugs likemitoxantrone 
are loaded in pores of MP-SiO2 NPs and capping was done by 
means by anticancer drug gossypol. The combination of these 
two-drug-functionalized MP-SiO2NPs provide a very functional 
chemotherapeutic treatment. An in vitro studies showed that 
environmental conditions such as acidic conditions unlocked 
the caps of MP-SiO2 NPs. Thus, this unlocking of caps cause 
the hydrolysis of capping unit of boronate ester by acid and 
ester bridges of boronate are separated by lactate ligand. The 
gossypol-capped mitoxantrone-loaded have better cytotoxicity 
towards cancerous cells. The comparative studies showed that 
the gossypol-capped mitoxantrone-loaded MP-SiO2NPs show 
more better death of cancer cells as compared to cyclodextrin-
capped mitoxantrone-loaded [52].

Doping of mitoxantrone with methionine increase its cytotoxic 
effect and reduces its cardiotoxicity as compared to mitoxantrone 
alone. Methionine doped with mitoxantrone as L- methionine-
conjugated mitoxantrone (MX-MET) molecule and generally 
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refered as WRC-213.The WRC-213 showed the formation of tail 
in DNA and also reduce cytotoxicity as compared to MX H9c2 
cells [53]. Further studies also showed that mitoxantronedoped 
with 1,4-bis-L-methionine showed less toxicity,better breaking 
of cancer cells DNA and less drug resistance profile [54].

CONCLUSIONS AND FUTURE PERSPECTIVES
Mitoxantroneis an anticancer drug having wide range of 

antitumor activity.The starting material used for the synthesis 
of mitoxantrone isleucotetrahydroxyanthraquinone.It has been 
synthesized to reduce the cardiac toxicity of anthracycline 
drugs. By structure elucidation mitoxantrone have different 
structure analogues on the bases of different substitution at 
position 1,2,3,4 of its structure.Mitoxantrone is aninhibitor of 
DNA enzyme topoisomerase-II.The dosage of mitoxantronegiven 
to patients is limited due to its potential cardiactoxicity and due 
to its hematologic adverse reactions. The potency and reduction 
in toxicity can be obtained further through proper research in 
mammal models by doing modification in the drug and its use 
of combination with other drugs that neutralize its effect in the 
heart.
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