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Abstract

Prediction of breast cancer based upon several features computed for each 
subject is a binary classification problem. Several discriminant methods exist for this 
problem, some of the commonly used methods are: Decision Trees, Random Forest, 
Neural Network, Support Vector Machine (SVM), and Logistic Regression (LR). Except 
for Logistic Regression, the other listed methods are predictive in nature; LR yields 
an explanatory model that can also be used for prediction, and for this reason it 
is commonly used in many disciplines including clinical research. In this article, we 
demonstrate the method of Bayesian LR to predict breast cancer using the Wisconsin 
Diagnosis Breast Cancer (WDBC) data set available at the UCI Machine Learning 
Repository. 

INTRODUCTION
Cancer is a group of diseases characterized by the 

uncontrolled growth and spread of abnormal cells [1]. Globally, 
breast cancer is the most frequently diagnosed cancer and the 
leading cause of cancer death among females, accounting for 
23% of the total cancer cases and 14% of the cancer deaths 
[2]. In US as well, breast cancer is the most frequent type of 
cancer (Figure 1). Bozorgi, Taghva, and Singh [3] used logistic 
regression for the prediction of breast cancer survivability 
using the SEER (Surveillance, Epidemiology, and End Results) 
database NCI (2016) of 338,596 breast cancer patients. Salama, 
Abdelhalim and Zeid [4], compared different classifiers (decision 
tree, Multi-Layer Perception, Naive Bayes, Sequential Minimal 
Optimization, and K-Nearest neighbor) on three different data 
sets of breast cancer and found a hybrid of the four methods 
to be the best classifier. Delen, Walker and Kadam [5], used 
artificial neural networks (ANN), decision trees (DT) and logistic 
regression (LR) to predict breast cancer survivability using a 
dataset of over 200,000 cases, using 10-fold cross-validation for 
performance comparison. The overall accuracies of the three 
methods turned out to be 93.6% (ANN), 91.2% (DT), and 89.2% 
(LR). Peretti and Amenta [6] used logistic regression to predict 
breast cancer tumor on a data set with 569 cases and obtained 
overall accuracy of 85%. Barco et al. [7], used LR on a data set 
of 1254 breast cancer patients to predict high tumour burden 
(HTB), as defined by the presence of three or more involved 
nodes with macro metastasis. Three predictors (tumour size, 
lymphovascular invasion and histological grade) were found 
to be statistically significant. LR and ANN are commonly used 
in many medical data classification tasks. Dreiseitl, and Ohno-
Machado [8] summarize the differences and similarities of these 

models and compare them with a few other machine learning 
algorithms. Van Domelen et al. [9], estimated the LR model from a 
Bayesian approach in situations when the predictors are random 
variables with measurement errors. In a study to determine the 
main causes of complications after radical cystectomy (urinary 
bladder removal) [10], multivariate logistic regression was used 
to show that the main causes of complications were anemia 
before surgery, weight loss, intraoperative blood loss, intra-
abdominal infection. 

In the present article, we use the Wisconsin Diagnostic 
Breast Cancer Data Set of 569 observations on 32 variables [11] 
to predict breast cancer using the method of Bayesian LR. We 
provide a description of the Bayesian LR in the next section. 

BAYESIAN ESTIMATION OF LOGISTIC REGRES-
SION MODEL

The Logistic Regression (LR) model is a special type of 
regression model fitted to a binary

(0-1) response variable Y, which relates the probability that Y 
equals 1 to a set of predictor variables:
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Where X1, …, XP are K predictors, which can be continuous or 
discrete. The above model can be expressed in terms of log-odds 
as follows [12]
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In the frequentist approach, given the random sample

1 2( , , ,..., ),  1, 2,...,j j j KjY X X X j n= ,

Yj are n independent realizations of a Bernoulli experiment 
with probability of success P (Yj=1)given by (1); the model 
coefficients βj are unknown constants to be estimated from data. 
The likelihood function of the sample is
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The LR model parameters are determined by the method 
of maximum likelihood estimation (MLE), which finds the 
β-coefficients that maximize the logarithm of the likelihood 
function
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In the Bayesian approach, the model coefficients (β1, β2, 
…,K) are realizations of a K-variate random vector generated 
from the joint prior distribution; any prior knowledge about 
the β-coefficients can be incorporated in this joint prior 
distribution. All inferences drawn using the Bayesian approaches 
are conditional on data, and large sample theory of estimates 
is not needed. The conditional sample likelihood given by 
expression (3) is combined with the joint prior distribution of 
the parameters via the Bayes theorem [13] to obtain the joint 
posterior distribution of the model parameters, as shown below.
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If very little prior knowledge exists about the model 
parameters, we can use a vague prior. The marginal posterior 
distributions are numerically computed from the joint posterior 
distribution, and the means of these distributions are the 
parameter estimates. We can also obtain 95% confidence intervals 
of the parameters from these marginal posterior distributions. 
In Bayesian framework, these confidence intervals are called 
credible sets. In computing a credible set, it is desirable to obtain 
a credible set with shortest interval. The 95% highest posterior 
density (HPD) credible set contains only those points with largest 
posterior probability distribution [14]. A comparison of Bayesian 
and Frequentist approaches for estimation of predictive models 
is provided in [15-18]. 

Performance measures for prediction of a binary 
response

A large number of performance measures for multi-level 
classifiers exist in machine learning literature [19]. Commonly 
used performance measures of classifiers are accuracy, precision, 
recall and the geometric mean F1 of precision and recall [20,21]. 
To compute these measures, we first need to calculate the 2x2 
confusion matrix shown in Table (1).

Here Ci,j = number of times true response of j get predicted as 
i (i, j = 0, 1).

Figure 1 Estimated number of new cases in US for selected cancers – 2018.
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Table 1: Confusion matrix for a binary classifier.

Observed Y

Predicted Y 0 1

0 C0,0 C0,1

1 C1,0 C1,1

The performance measures accuracy, precision, recall and 
F1 are calculated for each category 0 and 1 from the following 
formulas:

1

,
0

1 1

,
0 0

Accuracy = 
j j

j

j j
i j

C

C

=

= =

∑

∑∑
                (6)

,
j 1

,
0

Precision   j j

j k
k

C

C
=

=

∑
                                  (7)

,
j 1

,
0

Recall       j j

k j
k

C

C
=

=

∑
                 (8)

j j2  Precision   Recall
F1    ,    0,  1

(Precision  + Recall )j
j j

j
× ×

= =

Bayesian prediction of breast cancer

The data set used here is the Wisconsin Diagnostic Breast 
Cancer (WDBC) Data Set, which is well-known in Machine 
Learning literature [9]. This data set has 569 observations on 
32 variables including the binary response variable “Diagnosis” 
which takes values M (malignant) and B (benign). There are 10 
features computed for each cell nucleus:

a) Radius (average distance from center to points on the 
perimeter)

b) Texture (standard deviation of gray-scale values)

c) Perimeter

d) Area

e) Smoothness (local variation in radius lengths)

f) Compactness (perimeter^2 / area - 1.0)

g) Concavity (severity of concave portions of the contour)

Table 2: Bayesian LR model with all 30 predictors in the model fitted to the training set.
Estimate SE z value P-value VIF

(Intercept) -2968.33 1189296.4 0 1
Radius -110.8 204090.25 0 1 44754.48
Texture -0.43 16095.7 0 1 2307.93

Perimeter 30.78 48403.8 0 1 123629.76
Area -1.07 2357.23 0 1 41688.84

Smoothness 2626.6 4824631.59 0 1 995.55
Compactness -4846.98 1278852.25 0 1 1477.60

Concavity -938.94 766227.12 0 1 543.40
N.Concave 8703.04 1884638.69 0 1 476.13
Symmetry -619.86 588019.99 0 1 78.01

Fractal.Dim 4286.86 3366578.33 0 1 102.07
Radius.SE 1307.2 836904.03 0 1 6244.44
Texture.SE -36.76 138213.51 0 1 3327.97

Perimeter.SE -46.95 49083.59 0 1 1334.69
Area.SE -1.97 10112.03 0 1 6439.77

Smoothness.SE 9958.43 6060290.39 0 1 182.61
Compactness.SE 2104.2 3284120.37 0 1 2212.24

Concavity.SE 3543.98 2507993.37 0 1 1488.06
N.Concave.SE 1017.04 13135157.45 0 1 2677.67
Symmetry.SE -1398.05 3169097.88 0 1 189.51

Fractal.Dim.SE -87436.83 25555442.67 0 1 1169.20
Radius.worst -17.55 221557.85 0 1 58635.27
Texture.worst 11.33 20078.63 0 1 8625.44

Perimeter.worst 8.8 5050.34 0 1 1760.05
Area.worst -0.02 2742.31 0 1 82482.72

Smoothness.worst 269.41 1743939.91 0 1 408.94
Compactness.worst -582.97 490340.38 0 1 2872.22

Concavity.worst 352.13 668403.99 0 1 5241.94
N.Concave.worst -1317.63 1509411.14 0 1 1163.37
Symmetry.worst 937.3 490396.22 0 1 357.43

Fractal.Dim.worst 11727.58 1821720.52 0.01 0.99 402.70
Note: VIF values for LR model with all predictors in the model are very high: minimum (VIF) = 78, max (VIF) = 123630.
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Table 3: Final Bayesian LR model fitted to the training set.

Estimate SE z value Pr(>|z|) VIF

(Intercept) -20.38 3.1 -6.57 0

Texture 0.28 0.06 4.94 0 1.31

Area 0.01 0 6.9 0 1.45

Concavity 28.32 5.64 5.02 0 1.49

Symmetry 24.14 10.42 2.32 0.02 1.68

Note: Each of the four VIF values is < 5.

Table 4: Confusion Matrix for the Training set.

Predicted

Observed B M

B 249 11

M 18 149

Overall accuracy for the training set = 93.2%

Table 5: Confusion Matrix for the Test set.

Predicted

Observed B M

B 91 6

M 4 41

Overall accuracy for the test set = 93.0%

Table 6: Precision, recall and F1 measures for both training and test 
data sets.

Data set Precision Recall F1

Training
Category 1 0.93 0.89 0.91
Category 0 0.93 0.96 0.94

Test Category 1 0.87 0.91 0.89
Category 0 0.96 0.94 0.95

h) Concave points (number of concave portions of the 
contour)

i) Symmetry 

j) Fractal dimension (“coastline approximation” - 1)

The mean, standard error, and “worst” or largest (mean of 
the three largest values) of these features were computed for 
each image, resulting in a total of 30 features for each of the 
569 patients. Detailed descriptions of how these features are 
computed can be found in [22,23]. Since 20 of the 30 predictors 
were computed from data, high multicollinearity is expected in 
this data set. This can be seen in Figure 2, which is a plot of the 
correlations among the predictors in the WDBC data set. 

There are three common approaches for fitting a LR model 
when high multicollinearity exists in the data. Aguilera, Escabias, 
Valderrama [24] used Principal Components Analysis (PCA) 
to obtain independent predictors (Principal Components) and 
then used LR; simulated data was used in this study. Asar [25] 
proposed shrinkage type estimators for fitting LR models, and 
used Monte Carlo simulation experiments to show that the 
shrinkage estimators perform better than the standard MLE 

estimator. Another simpler and more common approach is to 
drop predictors with high variance inflation factor (VIF) values 
and obtain a model in which largest VIF is 5 [26]. This is the 
approach taken in this article.

RESULTS FOR WDBC DATA SET
All of the analyses presented here are performed using the 

statistical software environment R [27]. The WDBC data set of 569 
cases was first split into a 75% training set of 427 observations 
and 25% test set of 142 observations. The LR Model for the 
training set, with all 30 predictors in the model had VIF falling in 
the range 78 to 123630, with none of the predictor’s significant 
(Table 1); this is due to extremely high multicollinearities among 
the 30 predictors. After eliminating predictors with VIF > 5 one 
by one, the final LR model was obtained (Table 2) with Texture, 
Area, Concavity, and Symmetry in the model. A comparison of 
Tables 2 and 3 shows how multicollinearities affect the estimation 
of LR model coefficients:

I. In the LR model with all predictors, all P-values are 1 i.e., 
none of the predictors are significant,

II. The estimated coefficients of the final predictors in the 
LR model with all predictors are all negative, when these 
coefficients should all be positive,

III. The standard errors (SE) of the final predictors in the LR 
model with all predictors are orders of magnitude higher 
than the corresponding estimates, and

IV. The final LR model, which has Texture, Area, Concavity, 
and Symmetry as the significant predictors, does not 
suffer from any of the above three issues; each coefficient 
is positive as it should be, and each predictor is highly 
significant.

The Figure 3 shows the posterior distributions and the 95% 
HPD credible sets for the coefficients of the predictors in the final 
LR model; the 95% HPD credible sets are:

βTexture: (0.16, 0.37), βArea: (0.008, 0.016), βConcavity: (16.65, 
36.30), βArea: (3.22, 40.28). 

 Observe that all four 95% HPD credible sets fall to the right 
of 0.

Elimination of predictors with large VIF values leads to the 
final Bayesian LR model, given in Table 2.

The final LR model was next used to predict response 
“Diagnosis” for both the training and test data sets. The confusion 
matrices and overall accuracies for the training and test sets are 
shown in Tables 4 and 5.
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Figure 2 Correlation plot of 30 predictors in WDBC data set.

Figure 3 Posterior Distributions of Bayes Estimates of Logistic Regression Model Coefficients and their 95% HPD Credible Sets.

The values of precision, recall and F1 measures for both 
training and test data are all quite high, as shown in Table 6.

DISCUSSION 
The fitted Bayesian LR model has a total of four significant 

predictors: texture, area, concavity, and symmetry, with each 

predictor coefficient positive, as to be expected; the 95% HPD 
credible sets for these coefficients are shown in Figure 3; in each 
case, the entire 95% credible set falls to the right of 0, showing 
statistical significance of these predictors. Note that the Bayesian 
credible sets have a simple explanation – for example, we can 
say with 95% confidence that the random parameter βTexture falls 
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inside the interval (0.16, 0.37) with the most likely value of 0.28. 

CONCLUSION
We have used the Bayesian method for estimating the LR 

model for prediction of breast cancer; the Bayesian method 
comes with a much higher computational cost but has certain 
advantages over the classical method. The classical or frequentist 
approach to fitting an LR model is more common but has two 
major disadvantages: (i) it does not allow the user to formally 
incorporate any prior knowledge into parameter estimation 
[28], and (ii) it yields confidence intervals that are harder to 
interpret [29], with confidence going with the method or formula 
of computing the confidence interval, and not with the calculated 
confidence interval itself. Bayesian LR allows for formally 
using expert opinion and prior knowledge in the estimation of 
parameters, and typically yields better results than the classical 
method (Gordóvil-Merino et al., and Ogunsakin and Siaka). 

REFERENCES
1. American Cancer Society. Cancer Facts and Figures. 2018. 

2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global Cancer 
Statistics. Ca Cancer J Clin. 2011; 61: 69-90.

3. Bozorgi M, Taghva K, Singh AK. Cancer Survivability with Logistic 
Regression. Computing Conference, 2017-18- July 20. UK. London: 
IEEE. 2018.

4. Salama GI, Abdelhalim MB, Zeid MA. Breast Cancer Diagnosis on Three 
Different Datasets Using Multi-Classifiers. Int J Comp Infor Technol. 
2012; 1: 2277-2764.

5. Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a 
comparison of three data mining methods. Artif Intell Med. 2005; 34: 
113-127.

6. Peretti A, Amenta F. Breast Cancer Prediction by Logistic Regression 
with CUDA Parallel Programming Support. Breast Can Curr Res: 2016; 
1: 111.

7. Barco I, Garcia Font M, Garcia Fernandez A, Giménez N, Fraile M, Lain 
JM, et al. A logistic regression model predicting high axillary tumour 
burden in early breast cancer patients. Clin Transl Oncol. 2007; 19: 
1393-1399.

8. Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural 
network classification models: a methodology review. J Biomed 
Inform. 2002; 35: 352-359.

9. Van Domelen DR, Mitchell EM, Perkins NJ, Schisterman EF, Manatunga 
AK. Logistic regression with a continuous exposure measured inpools 
and subject to errors. Stat Med. 2018; 1-15.

10. Atduev V, Gasrataliev V, Ledyaev D, Belsky V, Lyubarskaya Y, Mamedov 
H. Predictors of 30-Day Complications after Radical Cystectomy. Exp 
Tech Urol Nephrol. 2018; 1.

11. Dua D, Karra Taniskidou E. UCI Machine Learning Repository. Irvine, 
CA: University of California, School of Information and Computer 
Science.

12. Kleinbaum DG, Klein M. Logistic Regression - A Self-Learning Text. 3rd 
Edn. New York: Springer. 2007.

13. Kruschke J. Doing Bayesian Data Analysis. 2nd Edn. Netherlands: 
Elsevier. 2014.

14. Rohan D, Gewali L, Singh AK. Computing the Bayesian highest posterior 
density credible sets for the lognormal mean. Environmetrics. 2002; 
13: 465-472. 

15. Newcombe PJ, Reck BH, Sun J, Platek GT, Verzilli C, Kader AK, et al. A 
comparison of Bayesian and frequentist approaches to incorporating 
external information for the prediction of prostate cancer risk. Genet 
Epidemiol. 2012; 36: 71-83. 

16. Ambrose PG, Hammel JP, Bhavnani SM, Rubino CM, Ellis-Grosse 
EJ, Drusano GL. Frequentist and Bayesian Pharmacometric-
Based Approaches To Facilitate Critically Needed New Antibiotic 
Development: Overcoming Lies, Damn Lies, and Statistics. Antimicrob 
Agents Chemother. 2012; 3: 1466-1470.

17. Austin PC, Naylor CD, Tu JV. A comparison of a Bayesian vs. a 
frequentist method for profiling hospital performance. J Eval Clin 
Pract. 2001; 7: 35-45.

18. Grzenda W. The advantages of Bayesian methods over Classical 
methods in the context of credible intervals. Infor Sys Manag. 2015; 
4: 53-63.

19. Sokolova M, Lapalme G. A systematic analysis of performance 
measures for classification tasks. Infor Process Manag. 2009; 45: 427-
437.

20. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical 
learning. New York: Springer. 2013.

21. Guillet F, Hamilton HJ. Quality measures in data mining. New York: 
Springer. 2007.

22. Street WN, Wolberg WH, Mangasarian OL. Nuclear Feature Extraction 
for Breast Tumor Diagnosis. Int Sym on Electron Imaging: Sci Technol. 
1905: 1993; 861-870.

23. Wolberg WH, Street WN, Mangasarian OL. Machine learning 
techniques to diagnose breast cancer from: image-processed nuclear 
features of fine needle aspirates. Cancer Lett. 1994; 77: 163-171.

24. Ana M. Aguilera, Manuel Escabias, Mariano J. Valderrama. Using 
principal components for estimating logistic regression with high-
dimensional multicollinear data. Comput. Stat Data Anal. 2006; 50: 
1905-1924.

25. Yasin Asar. Some new methods to solve multicollinearity in logistic 
regression. Commun Stat Simul Comput. 2014; 46: 2576-2586.

26. Montgomery DC, Peck EA, Vining GG. Introduction to Linear regression 
Analysis. 3rd Edn. New York: Wiley. 2012. 

27. R Core Team. R: A language and environment for statistical computing. 
R Foundation for Statistical Computing, Vienna, Austria. 2017.

28. Amalia Gordóvil-Merino, Joan Guàrdia-Olmos, Maribel Peró-Cebollero, 
Emilia I. de la Fuente-Solanas. Classical and Bayesian estimation in the 
logistic regression model applied to diagnosis of child attention deficit 
hyperactivity disorder. Psychol Rep. 2010; 106: 519-533.

29. Grzenda W. The advantages of Bayesian methods over Classical 
methods in the context of credible intervals. Infor Sys Manag. 2015; 
4: 53-63.

Chang M, Dalpatadu RJ, Phanord D, Singh AK (2018) Breast Cancer Prediction Using Bayesian Logistic Regression. Ann Community Med Pract 4(3): 1039.

Cite this article

https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf
https://www.ncbi.nlm.nih.gov/pubmed/21296855
https://www.ncbi.nlm.nih.gov/pubmed/21296855
https://ieeexplore.ieee.org/document/8252133/citations#citations
https://ieeexplore.ieee.org/document/8252133/citations#citations
https://ieeexplore.ieee.org/document/8252133/citations#citations
https://www.ijcit.com/archives/volume1/issue1/Paper010105.pdf
https://www.ijcit.com/archives/volume1/issue1/Paper010105.pdf
https://www.ijcit.com/archives/volume1/issue1/Paper010105.pdf
https://www.ncbi.nlm.nih.gov/pubmed/15894176
https://www.ncbi.nlm.nih.gov/pubmed/15894176
https://www.ncbi.nlm.nih.gov/pubmed/15894176
https://www.omicsonline.org/peer-reviewed/pbreast-cancer-prediction-by-logistic-regression-with-cuda-parallel-programming-supportp-77421.html
https://www.omicsonline.org/peer-reviewed/pbreast-cancer-prediction-by-logistic-regression-with-cuda-parallel-programming-supportp-77421.html
https://www.omicsonline.org/peer-reviewed/pbreast-cancer-prediction-by-logistic-regression-with-cuda-parallel-programming-supportp-77421.html
https://www.ncbi.nlm.nih.gov/pubmed/28808943
https://www.ncbi.nlm.nih.gov/pubmed/28808943
https://www.ncbi.nlm.nih.gov/pubmed/28808943
https://www.ncbi.nlm.nih.gov/pubmed/28808943
https://www.ncbi.nlm.nih.gov/pubmed/12968784
https://www.ncbi.nlm.nih.gov/pubmed/12968784
https://www.ncbi.nlm.nih.gov/pubmed/12968784
https://www.ncbi.nlm.nih.gov/pubmed/30022497
https://www.ncbi.nlm.nih.gov/pubmed/30022497
https://www.ncbi.nlm.nih.gov/pubmed/30022497
https://www.researchgate.net/publication/322861198_Predictors_of_30-Day_Complications_after_Radical_Cystectomy
https://www.researchgate.net/publication/322861198_Predictors_of_30-Day_Complications_after_Radical_Cystectomy
https://www.researchgate.net/publication/322861198_Predictors_of_30-Day_Complications_after_Radical_Cystectomy
https://archive.ics.uci.edu/ml/citation_policy.html
https://archive.ics.uci.edu/ml/citation_policy.html
https://archive.ics.uci.edu/ml/citation_policy.html
https://www.springer.com/in/book/9781441917416
https://www.springer.com/in/book/9781441917416
https://www.elsevier.com/books/doing-bayesian-data-analysis/kruschke/978-0-12-405888-0
https://www.elsevier.com/books/doing-bayesian-data-analysis/kruschke/978-0-12-405888-0
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.547
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.547
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.547
https://www.ncbi.nlm.nih.gov/pubmed/22890972
https://www.ncbi.nlm.nih.gov/pubmed/22890972
https://www.ncbi.nlm.nih.gov/pubmed/22890972
https://www.ncbi.nlm.nih.gov/pubmed/22890972
https://www.ncbi.nlm.nih.gov/pubmed/22155834
https://www.ncbi.nlm.nih.gov/pubmed/22155834
https://www.ncbi.nlm.nih.gov/pubmed/22155834
https://www.ncbi.nlm.nih.gov/pubmed/22155834
https://www.ncbi.nlm.nih.gov/pubmed/22155834
https://www.ncbi.nlm.nih.gov/pubmed/11240838
https://www.ncbi.nlm.nih.gov/pubmed/11240838
https://www.ncbi.nlm.nih.gov/pubmed/11240838
http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-c2ac1209-674b-46ee-b80f-c3cd4c7f8ae4
http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-c2ac1209-674b-46ee-b80f-c3cd4c7f8ae4
http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-c2ac1209-674b-46ee-b80f-c3cd4c7f8ae4
https://www.sciencedirect.com/science/article/abs/pii/S0306457309000259
https://www.sciencedirect.com/science/article/abs/pii/S0306457309000259
https://www.sciencedirect.com/science/article/abs/pii/S0306457309000259
https://www-bcf.usc.edu/~gareth/ISL/
https://www-bcf.usc.edu/~gareth/ISL/
https://www.springer.com/in/book/9783540449119
https://www.springer.com/in/book/9783540449119
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1905/0000/Nuclear-feature-extraction-for-breast-tumor-diagnosis/10.1117/12.148698.short?SSO=1
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1905/0000/Nuclear-feature-extraction-for-breast-tumor-diagnosis/10.1117/12.148698.short?SSO=1
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/1905/0000/Nuclear-feature-extraction-for-breast-tumor-diagnosis/10.1117/12.148698.short?SSO=1
https://www.ncbi.nlm.nih.gov/pubmed/8168063
https://www.ncbi.nlm.nih.gov/pubmed/8168063
https://www.ncbi.nlm.nih.gov/pubmed/8168063
https://www.sciencedirect.com/science/article/pii/S0167947305000630
https://www.sciencedirect.com/science/article/pii/S0167947305000630
https://www.sciencedirect.com/science/article/pii/S0167947305000630
https://www.sciencedirect.com/science/article/pii/S0167947305000630
https://www.tandfonline.com/doi/abs/10.1080/03610918.2015.1053925
https://www.tandfonline.com/doi/abs/10.1080/03610918.2015.1053925
https://www.wiley.com/en-us/Introduction+to+Linear+Regression+Analysis%2C+5th+Edition-p-9780470542811
https://www.wiley.com/en-us/Introduction+to+Linear+Regression+Analysis%2C+5th+Edition-p-9780470542811
https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing
https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing
http://journals.sagepub.com/doi/abs/10.2466/pr0.106.2.519-533
http://journals.sagepub.com/doi/abs/10.2466/pr0.106.2.519-533
http://journals.sagepub.com/doi/abs/10.2466/pr0.106.2.519-533
http://journals.sagepub.com/doi/abs/10.2466/pr0.106.2.519-533
http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-c2ac1209-674b-46ee-b80f-c3cd4c7f8ae4
http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-c2ac1209-674b-46ee-b80f-c3cd4c7f8ae4
http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-c2ac1209-674b-46ee-b80f-c3cd4c7f8ae4

	Breast Cancer Prediction Using Bayesian Logistic Regression
	Abstract
	Introduction
	Bayesian Estimation of Logistic Regression Model
	Results for Wdbc Data Set 
	Discussion  
	Conclusion
	References
	Figure 1
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Figure 2
	Figure 3

